Epipolar geometry
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We have seen how a rectified camera setup (where two cameras are oriented parallel to each other and
are translated along the X axis) leads to a simplified correspondence search: the corresponding pixel is
constrained to be on the same row. Does a similar constraint hold true in general? If it did, then we would
not need to search the entire second image to find a correspondence for a given pixel in the first image.

It turns out that a similar constraint does indeed hold true in general. The reason is as follows (Figure 1,
top left). Suppose we have two cameras in general position looking at a scene. Suppose we have a particular
pixel ¢y in the first image. We know that the 3D point corresponding to this pixel must lie somewhere
along the line connecting the pixel with the camera pinhole, and extending into the world. This line will
still appear as a line in the second image. Thus the corresponding pixel in the second image must lie along
a particular line, which is the image of this 3D line. This line in the second image is called the epipolar line
in the second image corresponding to pixel q;.

Thus for every pixel ¢; in image 1, there is a line in image 2 (called an epipolar line) on which the
corresponding pixel is constrained to lie. This epipolar line is the image (in camera 2) of the ray connecting
g1 with the camera pinhole. It follows therefore that this epipolar line must pass through the image of the
first camera’s pinhole in camera 2. This is called the epipole. Thus, every epipolar line must pass through
the epipole.

An alternate way of convincing yourself about this is as follows (Figure 1, top right). Suppose the two
camera pinholes are ¢ and ¢’. Suppose x is a pixel in image 1. Consider the plane II formed by x, ¢ and c’.
The world point X corresponding to x is constrained to lie on the line joining ¢ and x, so it must lie on this
plane. The corresponding image location in image 2, x’ lies on the line joining X and ¢, so it should also
lie on this plane. At the same time it should lie on the image plane of camera 2. Therefore x’ is constrained
to lie on the intersection of the plane IT with the image plane. The intersection of two planes is a line: the
epipolar line.

Figure 1 (bottom) shows an example of epipolar lines.

1 Deriving the epipolar constraint: the essential matrix

Let us derive the epipolar constraint mathematically. Let us assume, for now, that K for both cameras is I;
we will remove this assumption in the next section.

Without loss of generality, we can set up our world coordinate system to be aligned with camera 1: the
world origin is at the camera pinhole, and the world coordinate axes are aligned with the axes of the first
camera. Then, the projection matrix of the first camera is P(!) = [I 0]. We cannot say anything about
the location and orientation of the second camera, so its projection matrix is P(?) = [R t].

Suppose a world point Q is projected to q; in image 1 and qs in image 2. Then:
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Figure 1: Top: Two explanations for epipolar lines. Bottom: example epipolar lines



Now going to the second image:
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Substituting equation (4) above, we get:
A2z = M Rd; +t 9)

We now have an equation relating the two corresponding pixels, but it also includes the extraneous scalars
A1 and Ao. Let us try to remove them. First, we will take a cross product with t:

)\Qt X (_]’2 = >\1t X (qu) (10)

Here we have used the fact that for any vector a, a x a = 0. Now, we take a dot product with qa:

A2G2 - (t X d2) = M1dz2 - (t x (Rd1)) (11)
= 0= 61'2 . (t X (R(_il)) (13)

where we used the fact that for any 2 vectors a and b, a x b is perpendicular to both, so b- (a x b = 0.
To simplify this equation further, we convert all operations into matrix and vector products. First, it

az
can be shown that if a = |a, |, then a x b = [a] b, where [a]x is the following 3 x 3 matrix:
a,
0 —a; ay
[a]x = | a. 0 —a, (14)
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So we can write Equation (13) as:
Gz - ([t]xRG1) =0 (15)

Finally, it can be easily shown that a-b = a”b. Using this gives us:
ds [t]x Rd1 = 0 (16)

The matrix E = [t]x R is called the essential matriz. Thus, if §; and go are a pair of pixels, they must
satisfy the following epipolar constraint:

4 EGq1 =0 (17)

2 Epipolar lines and the epipole

How does the epipolar constraint yield epipolar lines? Consider a particular pixel ¢; in image 1. Then the
corresponding pixel in image 2 must satisfy g1 Eq; = 0. Since q; is known, we can write Eq; as a single
vector 1 of known coefficients. Then Go must satisfy: 21 = 0. This is the equation of a line: this is the
epipolar line in image 2 corresponding to ;. 1 = Eq; is the vector of coefficients of the line.

Similarly, we can show that if gs is a pixel in image 2, then the corresponding point ¢ in image 1 should
satisfy I''q; = 0, where ' = ETq@,. This is the epipolar line in image 1 corresponding to gs.



What about the epipoles? Above, we said that the epipoles are the image of one camera’s pinhole in the
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other camera. The first camera’s pinhole is at the origin, O = |0|. It’s image in image 2 is at
0
& = P?0 (18)
(0}
~[r o|7] 19
—t (20)

The claim is that all epipolar lines in image 2 pass through this epipole. As seen above, the equation of
the epipolar line in image 2 corresponding to a pixel ¢ in image 1 is 21 = 0, where 1 = Eq;. So we are
claiming that for all such lines 1, €21 = 0. In other words, we are claiming that €2 Fq; = 0 for all ;. Let
us see if this is true:

€3 FEq, = t"Eq, (21)
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Thus, € does indeed lie on every epipolar line in image 2.
What about the epipole in image 17 For that, we need to know the pinhole of camera 2. Recall from

an earlier lecture that if the camera pinhole is at location c, then t = —Rc. We can invert this to get the
location of the pinhole in terms of t: ¢ = —R”'t. The epipole in image 1 is thus:
_pT
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We need to show that this lies on every epipolar line ' = E7qy, which means that we need to show

1'"e; = g Eé,; is 0 for all gs.
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Thus €; does indeed lie on every epipolar line in image 1.

Rank of the essential matrix As we have seen above,

s E& =0 Yq, (31)
= Eé; =0 (32)

Thus, there exists a non-zero vector €; for which £€; = 0. This means that F cannot be full rank: it must
have rank less than 3. It turns out that F has rank 2.

3 Estimating the essential matrix

If we know R and t (which we would if we knew the location and orientation of the two cameras), then we
can figure out E. But what if we don’t know R and t7
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Again, we can estimate E from correspondences. Given a pair of corresponding pixels g; = [y1| and
1
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do = |y2|, we can write down a constraint on = | Eo;  Faos  Fog
1 E31 FE3x Ess

Gy Ed1 =0 (33)
Enw Eip FEis Ha]

= [z y2 1] [Ear Ez Eas| [y1| =0 (34)
L3 Ezp Esz| |1

= Fnix1ma + Eiayiza + E13xe + E2111y2 + Eaatiy2 + Easyz + Es121 + Esayr + E33 =0 (35)
This is a linear equation in the entries of E. Thus one correspondence yields one linear equation.

If we have a set of correspondences, we can set up a system of linear equations. As with camera calibration,
the equations take the form:

Ae=0 (36)
Eyy
E12 . . . . . . . . .
where e = | . | is the vector of unknowns. Again as with camera calibration, if F is a solution, so is aF.
E33

We therefore add an additional constraint that ||E||r = 1, and as before, solve the following minimization
problem via SVD:

min Ae
e
s.t (37)
e[ =1

However, this is not enough. Above, we noted that the essential matrix must be a rank 2 matrix. However,
the solution method described above does not enforce that. How should we enforce this constraint?

Unfortunately, enforcing the rank constraint in the optimization problem above makes it intractable to
optimize. Instead, we take the solution from the optimization problem above, say Fj, and we try to find the
best rank-2 matrix that approximates Fy:

mbin |E — Ep|lr

s.t (38)
rank(E) =2

This optimization problem is also solved using an SVD. We first compute an SVD of Ey : By = ULV7T. ©
is a diagonal 3 x 3 matrix. We find the diagonal entry that is the smallest in absolute value and set it to 0
to get 3. Then we compute F as E =UX'VT.

How many correspondences do we need to estimate E? FE has 9 entries. We get 1 equation from the
constraint that ||E||p = 1, so we need 8 more. Each correspondence gives us a single equation, so we need
at least 8 correspondences’.

While we will not delve deeper into this, we can actually estimate t and R from F using an SVD.

4 The Fundamental matrix

In the above derivation of the essential matrix, we assumed that K is identity for both cameras. What if K
is not identity?

I Actually, we only need 7, if we use the rank constraint to parametrize E differently



In this case, we will start with the following two equations:

ar =K [I 0]Q (39)
d> =K [R t]Q (40)

Let us write ; = K; *q1, and G, = K, *Go. Then:

= 0]Q (41)

d,=[R t]Q (42)

Following the derivation we did earlier in this documentation, we get:

a5 [t]xRdy =0 (43)
= G K, T[t]«RK{'d1 =0 (44)
= q; Fg; =0 (45)

Here F = K, T[t]x RK; " is the Fundamental matriz.
The fundamental matrix has the same properties as the essential matrix: it yields epipolar lines and
epipoles, and it has rank 2. However, from the fundamental matrix we cannot estimate t and R from F.

5 Structure from motion

We now have everything we need for 3D reconstruction from a pair of cameras. We can imagine three
scenarios:

1. If we can choose where to place cameras, then we can place the two cameras parallel to each other
translated along the X axis (the rectified camera setup).

2. If not, but we know some (around 6) 3D points and their projections in the 2 images, we can estimate
the projection matrices for both cameras. We can then compute E and use the epipolar constraint to
clean up correspondences. The correspondences yield 3D points through triangulation.

3. Otherwise we can use 8 correspondences to estimate F, and from that estimate t and R (assuming K
is I). We can then use correspondences to triangulate.

The problem of reconstructing a 3D scene from a pair of unknown cameras (route 3) is called structure
from motion.



