CS4670/5760: Computer Vision

Kavita Bala

Lecture 29: Photometric Stereo 2

Thanks to Scott Wehrwein

Announcements

PA 4 out tonight

HW 2 out tonight

Wed/Fri: MVS, sFM

Lambertian Reflectance

$$I = N \cdot L$$

Image Surface Light normal direction

Image intensity \propto cos(angle between N and L)

Solving the Equations

- When is L nonsingular (invertible)?
 - >= 3 light directions are linearly independent, or:
 - All light direction vectors cannot lie in a plane.
- What if we have more than one pixel?
 - Stack them all into one big system.

More than Three Lights

$$\begin{bmatrix} I_1 & \dots & I_n \end{bmatrix} = k_d \mathbf{N}^T \begin{bmatrix} \mathbf{L_1} & \dots & \mathbf{L_n} \end{bmatrix}$$

Solve using least squares (normal equations):

$$I = GL$$

$$IL^{T} = GLL^{T}$$

$$G = (IL^{T})(LL^{T})^{-1}$$

- Equivalently use SVD
- Given G, solve for N and k_d as before.

More than one pixel

Stack all pixels into one system:

Solve as before.

Depth Map from Normal Map

We now have a surface normal, but how do we

get depth?

(x, y + 1)

(x + 1, y)

Assume a smooth surface

$$V_1 = (x+1, y, z_{x+1,y}) - (x, y, z_{xy})$$

= (1, 0, $z_{x+1,y} - z_{xy}$)

$$0 = N \cdot V_1$$

= $(n_x, n_y, n_z) \cdot (1, 0, z_{x+1,y} - z_{xy})$
= $n_x + n_z(z_{x+1,y} - z_{xy})$

Get a similar equation for V₂

- Each normal gives us two linear constraints on z
- compute z values by solving a matrix equation

Trick: Place a mirror ball in the scene.

 The location of the highlight is determined by the light source direction.

Real-World HDR Lighting Environments

Lighting Environments from the Light Probe Image Gallery: http://www.debevec.org/Probes/

Acquiring the Light Probe

© Kavita Bala, Computer Science, Cornell University

Assembling the Light Probe

Extreme HDR Image Series

Extreme HDR Image Series

sun closeup

© Kavita Bala, Computer Science, Cornell University

HDRI Sky Probe

Trick: Place a mirror ball in the scene.

 The location of the highlight is determined by the light source direction.

For a perfect mirror, the light is reflected across
 N:

$$I_e = \begin{cases} I_i & \text{if } \mathbf{V} = \mathbf{R} \\ 0 & \text{otherwise} \end{cases}$$

 So the light source direction is given by:

$$L = 2(N \cdot R)N - R$$

For a sphere with highlight at point H:

• R = direction of the camera from C = $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$ $L = 2(N \cdot R)N - R$

Results

from Athos Georghiades

Results

Color Images

Now we have 3 equations for a pixel:

$$I_R = k_{dR} LN$$
 $I_G = k_{dG} LN$
 $I_B = k_{dB} LN$

- Simple approach: solve for N using grayscale or a single channel
- Then fix N and solve for each channel's : k_d

$$k_d = \frac{\sum_{i} I_i L_i N^T}{\sum_{i} (L_i N^T)^2}$$

Color Images

• Then fix N and solve for each channel's $: k_d$

$$Q = \sum_{i} (I_i - k_d L_i N^T)^2$$

$$\frac{\delta Q}{\delta k_d} = \sum_i -2(I_i - k_d L_i N^T) L_i N^T = 0$$

$$k_d = \frac{\sum_i I_i L_i N^T}{\sum_i (L_i N^T)^2}$$

For (unfair) Comparison

- Multi-view stereo results on a similar object
- 47+ hrs compute time

State-of-the-art MVS result

Ground truth

Taking Stock: Assumptions

Lighting	Materials	Geometry	Camera
directional	diffuse	convex / no shadows	linear
known direction	no inter- reflections		orthographic
> 2 nonplanar directions	no subsurface scattering		

Questions?

• What we've seen so far: [Woodham 1980]

 Next up: Unknown light directions [Hayakawa 1994]

Surface normals Light directions

Same as before, just transposed:

Both L and N are now unknown! This is a matrix factorization problem.

$$M_{ij} = L_i \cdot N_j$$

There's hope: We know that M is rank 3

Use the SVD to decompose M:

$$\mathsf{M} = \begin{bmatrix} \mathsf{U} & \mathsf{\Sigma} & \mathsf{V} \\ \mathsf{D} & \mathsf{D} \end{bmatrix}$$

SVD gives the best rank-3 approximation of a matrix.

Use the SVD to decompose M:

$$\mathsf{M} = \begin{bmatrix} \mathsf{U} & \mathsf{\Sigma} & \mathsf{V} \\ \mathsf{D} & \mathsf{D} \end{bmatrix}$$

What do we do with Σ ?

Use the SVD to decompose M:

$$\mathsf{M} = \left \lfloor \mathsf{U}\sqrt{\Sigma} \right \rfloor$$

What do we do with Σ ?

Use the SVD to decompose M:

$$\mathsf{M} = \left \lfloor \mathsf{U}\sqrt{\Sigma} \right \rfloor$$

Can we just do that?

Unknown Lighting

Use the SVD to decompose M:

$$\mathsf{M} = \begin{bmatrix} \mathsf{U}\sqrt{\Sigma} & A & A^{-1} & \sqrt{\Sigma}\mathsf{V} \\ & \hat{L} = U\sqrt{\Sigma}, \hat{S} = \sqrt{\Sigma}V \end{bmatrix}$$

Can we just do that? ...almost.

The decomposition is non-unique up to an invertible 3x3 A.

Unknown Lighting

Use the SVD to decompose M:

$$\mathsf{M} = \begin{bmatrix} \mathsf{U}\sqrt{\Sigma} & A & A^{-1} \end{bmatrix} \boxed{} \sqrt{\Sigma} \mathsf{V}$$

$$L = U \sqrt{\Sigma} A \qquad \quad S = A^{-1} \sqrt{\Sigma} V$$

Unknown Lighting

Use the SVD to decompose M:

M
$$= \boxed{ U\sqrt{\Sigma}} \boxed{A} \boxed{A^{-1}} \boxed{\sqrt{\Sigma}V}$$

$$L = U\sqrt{\Sigma}A \qquad S = A^{-1}\sqrt{\Sigma}V$$

You can find A if you know

- 6 points with the same reflectance, or
- 6 lights with the same intensity.

Why 6 points?

• Let $C = A^{-1}$, to match the notation of paper

$$\hat{S} = \sqrt{\Sigma}V \qquad \hat{s_k}^T C C^T \hat{s_k} = constant \\ \hat{s_k}^T B \hat{s_k} = constant$$

B is symmetric, hence 6

$$B = W\Pi W^T, C = W\sqrt{\Pi}$$

Unknown Lighting: Ambiguities

- Multiple combinations of lighting and geometry can produce the same sets of images.
- Add assumptions or prior knowledge about geometry or lighting, etc. to limit the ambiguity.

- Workarounds for many of the restrictive assumptions.
- Webcam photometric stereo:

Ackermann et al. 2012

• Photometric stereo from unstructured photo collections (different cameras and viewpoints):

Shi et al, 2014

Non-Lambertian (shiny) materials:

Hertzmann and Seitz, 2005

Hauagge, Wehrwein, Bala, Snavely, 2013

Cookie

Clear Elastomer

Johnson and Adelson, 2009

Lights, camera, action

Figure 7: Comparison with the high-resolution result from the original retrographic sensor. (a) Rendering of the high-resolution \$20 bill example from the original retrographic sensor with a close-up view. (b) Rendering of the captured geometry using our method.

Figure 9: Example geometry measured with the bench and portable configurations. Outer image: rendering under direct lighting. Inset: macro photograph of original sample. Scale shown in upper left. Color images are shown for context and are to similar, but not exact scale.