CS4670 / 5670: Computer Vision KavitaBala

Lecture 15: Projection

"The School of Athens," Raphael

Announcements

- Prelim on Thu
 - Everything before this slide
 - Bring your calculator
 - 7:30 pm, Location: Call Auditorium, Kennedy Hall

 How many numbers do we need to describe a camera?

- We need to describe its pose in the world
- We need to describe its internal parameters

A Tale of Two Coordinate Systems

Two important coordinate systems:

- 1. World coordinate system
- 2. *Camera* coordinate system

- To project a point (x,y,z) in world coordinates into a camera
- First transform (x,y,z) into camera coordinates
- Need to know
 - Camera position (in world coordinates)
 - Camera orientation (in world coordinates)
- Then project into the image plane
 - Need to know camera intrinsics
- These can all be described with matrices

Projection equation

The projection matrix models the cumulative effect of all parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point (x'_c, y'_c), pixel size (s_x, s_y)
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

• The projection matrix models the cumulative effect of all parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point (x'c, y'c), pixel size (sx, sy)
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

identity matrix $\mathbf{\Pi} = \begin{bmatrix} -Js_x & 0 & x_c \\ 0 & -fs_y & y'_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3x3} & \mathbf{0}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{f}_{3x3} & \mathbf{T}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix}$ rotation intrinsics projection translation

- The definitions of these parameters are not completely standardized
 - especially intrinsics—varies from one book to another

Projection matrix

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Affine change of coordinates

- Coordinate frame: point plus basis
- Need to change representation of point from one basis to another
- Canonical: origin (0,0) w/ axes e1, e2

- "Frame to canonical" matrix has frame in columns
 - takes points represented in frame
 - represents them in canonical basis

Another way of thinking about this

Change of coordinates

On the Board

Coordinate frame summary

- Frame = point plus basis
- Frame matrix (frame-to-canonical) is

$$F = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{c} \\ 0 & 0 & 1 \end{bmatrix}$$

Move points to and from frame by multiplying with F

$$p_e = F p_F \quad p_F = F^{-1} p_e$$

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

For any rotation matrix R acting on \mathbb{R}^n ,

Perspective projection

$$\begin{bmatrix} -f & 0 & 0 \\ 0 & -f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

K (intrinsics)

(converts from 3D rays in camera coordinate system to pixel coordinates)

$$(x,y,z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z}, -d)$$

Perspective projection

$$\begin{bmatrix} -f & 0 & 0 \\ 0 & -f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

(intrinsics)

(converts from 3D rays in camera coordinate system to pixel coordinates)

in general,
$$\mathbf{K}=\left[\begin{array}{cccc} -f & s & c_x \\ 0 & -\alpha f & c_y \\ 0 & 0 & 1 \end{array}\right]$$
 (upper triangular matrix)

lpha: aspect ratio (1 unless pixels are not square)

 $oldsymbol{S}$: skew (0 unless pixels are shaped like rhombi/parallelograms)

 (c_x,c_y) : principal point ((0,0) unless optical axis doesn't intersect projection plane at origin)

Projection matrix

$$\boldsymbol{\Pi} = \mathbf{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} & 0 \\ 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3 \times 3} & -\mathbf{c} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$
(t in book's notation)
$$\boldsymbol{\Pi} = \mathbf{K} \begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$

Focal length

Can think of as "zoom"

24mm

50mm

200mm

Related to field of view

http://www.pierretoscani.com/echo_focal_length.html

Focal length in practice

24mm

50mm

135mm

Fredo Durand

Focal length = cropping

24mm

50mm

135mm

Fredo Durand

Focal length vs. viewpoint

• Telephoto makes it easier to select background (a small change in viewpoint is a big change in background.

Grand-angulaire 24 mm

Normal 50 mm

Longue focale 135 mm

Fredo Durand

 http://www.slate.com/blogs/browbeat/ 2014/01/21/ dolly_zoom_supercut_video_shows_the_vertigo_effect_in_jaws_goodfellas_raging.html

Fredo Durand