CS4670/5670: Computer Vision Noah Snavely

Single-view modeling, Part 1

Projective geometry

Ames Room

- Readings
- Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992, (read 23.1-23.5, 23.10)
- available online: http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

Projective geometry-what's it good for?

- Uses of projective geometry
- Drawing
- Measurements
- Mathematics for projection
- Undistorting images
- Camera pose estimation
- Object recognition

Paolo Uccello

Applications of projective geometry

Measurements on planes

Approach: unwarp then measure

Point and line duality

- A line I is a homogeneous 3 -vector
- It is \perp to every point (ray) \mathbf{p} on the line: lp=0

What is the line I spanned by rays \mathbf{p}_{1} and $\mathbf{p}_{\mathbf{2}}$?

- I is \perp to p_{1} and $p_{2} \Rightarrow I=p_{1} \times p_{2}$
- I can be interpreted as a plane normal

What is the intersection of two lines \mathbf{I}_{1} and $\mathbf{I}_{\mathbf{2}}$?

- p is \perp to I_{1} and $I_{2} \Rightarrow p=I_{1} \times I_{2}$

Points and lines are dual in projective space

Ideal points and lines

- Ideal point ("point at infinity")
$-p \cong(x, y, 0)-$ parallel to image plane
- It has infinite image coordinates

Ideal line

- $I \cong(a, b, 0)$ - parallel to image plane
- Corresponds to a line in the image (finite coordinates)
- goes through image origin (principle point)

3D projective geometry

- These concepts generalize naturally to 3D
- Homogeneous coordinates
- Projective 3D points have four coords: $\mathbf{P}=(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W})$
- Duality
- A plane \mathbf{N} is also represented by a 4 -vector
- Points and planes are dual in 3D: $\mathbf{N} \mathbf{P}=\mathbf{0}$
- Three points define a plane, three planes define a point

3D to 2D: perspective projection

Projection:

$$
\mathbf{p}=\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi} \mathbf{P}
$$

- Vanishing point
- projection of a point at infinity
- can often (but not always) project to a finite point in the image

- Properties
- Any two parallel lines (in 3D) have the same vanishing point v
- The ray from \mathbf{C} through \mathbf{v} is parallel to the lines
- An image may have more than one vanishing point
- in fact, every image point is a potential vanishing point

Three point perspective

