Geometric Transformations CS 4620 Lecture 10 # A little quick math background - Notation for sets, functions, mappings - Linear and affine transformations - Matrices - Matrix-vector multiplication - Matrix-matrix multiplication - Implicit vs. explicit geometry - Simplest transformation: $T(\mathbf{v}) = \mathbf{v} + \mathbf{u}$ - Inverse: $T^{-1}(\mathbf{v}) = \mathbf{v} \mathbf{u}$ - Example of transforming circle - Simplest transformation: $T(\mathbf{v}) = \mathbf{v} + \mathbf{u}$ - Inverse: $T^{-1}(\mathbf{v}) = \mathbf{v} \mathbf{u}$ - Example of transforming circle ### Linear transformations One way to define a transformation is by matrix multiplication: $$T(\mathbf{v}) = M\mathbf{v}$$ • Such transformations are linear, which is to say: $$T(a\mathbf{u} + \mathbf{v}) = aT(\mathbf{u}) + T(\mathbf{v})$$ (and in fact all linear transformations can be written this way) ## Geometry of 2D linear trans. - 2x2 matrices have simple geometric interpretations - uniform scale - non-uniform scale - rotation - shear - reflection - Reading off the matrix • Uniform scale $$\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} sx \\ sy \end{bmatrix}$$ • Nonuniform scale $$\begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s_x x \\ s_y y \end{bmatrix}$$ • Rotation $$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{bmatrix}$$ #### Reflection can consider it a special case of nonuniform scale $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ #### Shear can also build these from rotations and nonuniform scales $$\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + ay \\ y \end{bmatrix}$$ $$\begin{bmatrix} 1 & 0.5 \\ 0 & 1 \end{bmatrix}$$ # Composing transformations Want to move an object, then move it some more $$-\mathbf{p} \to T(\mathbf{p}) \to S(T(\mathbf{p})) = (S \circ T)(\mathbf{p})$$ - We need to represent S o T ("S compose T") - and would like to use the same representation as for S and T - Translation easy $$- T(\mathbf{p}) = \mathbf{p} + \mathbf{u}_T; S(\mathbf{p}) = \mathbf{p} + \mathbf{u}_S$$ $$(S \circ T)(\mathbf{p}) = \mathbf{p} + (\mathbf{u}_T + \mathbf{u}_S)$$ - Translation by uT then by uS is translation by uT + uS - commutative! # Composing transformations Linear transformations also straightforward $$T(\mathbf{p}) = M_T \mathbf{p}; S(\mathbf{p}) = M_S \mathbf{p}$$ $$(S \circ T)(\mathbf{p}) = M_S M_T \mathbf{p}$$ - Transforming first by M_T then by M_S is the same as transforming by M_SM_T - only sometimes commutative - e.g. rotations & uniform scales - e.g. non-uniform scales w/o rotation - Note M_SM_T , or S o T, is T first, then S # Combining linear with translation - Need to use both in single framework - Can represent arbitrary seq. as $T(\mathbf{p}) = M\mathbf{p} + \mathbf{u}$ $$egin{align} -& T(\mathbf{p}) = M_T \mathbf{p} + \mathbf{u}_T \ -& S(\mathbf{p}) = M_S \mathbf{p} + \mathbf{u}_S \ -& (S \circ T)(\mathbf{p}) = M_S (M_T \mathbf{p} + \mathbf{u}_T) + \mathbf{u}_S \ &= (M_S M_T) \mathbf{p} + (M_S \mathbf{u}_T + \mathbf{u}_S) \ -& ext{e.g. } S(T(0)) = S(\mathbf{u}_T) \ \end{pmatrix}$$ - Transforming by M_T and \mathbf{u}_T , then by M_S and \mathbf{u}_S , is the same as transforming by $M_S M_T$ and $\mathbf{u}_S + M_S \mathbf{u}_T$ - This will work but is a little awkward ## Homogeneous coordinates - A trick for representing the foregoing more elegantly - Extra component w for vectors, extra row/column for matrices - for affine, can always keep w = 1 - Represent linear transformations with dummy extra row and column $$\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \\ 1 \end{bmatrix}$$ ## Homogeneous coordinates Represent translation using the extra column $$egin{bmatrix} 1 & 0 & t \ 0 & 1 & s \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} x \ y \ 1 \end{bmatrix} = egin{bmatrix} x+t \ y+s \ 1 \end{bmatrix}$$ ## Homogeneous coordinates Composition just works, by 3x3 matrix multiplication $$\begin{bmatrix} M_S & \mathbf{u}_S \\ 0 & 1 \end{bmatrix} \begin{bmatrix} M_T & \mathbf{u}_T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix}$$ $$= \begin{bmatrix} (M_S M_T) \mathbf{p} + (M_S \mathbf{u}_T + \mathbf{u}_S) \\ 1 \end{bmatrix}$$ - This is exactly the same as carrying around M and u - but cleaner - and generalizes in useful ways as we'll see later #### Affine transformations - The set of transformations we have been looking at is known as the "affine" transformations - straight lines preserved; parallel lines preserved - ratios of lengths along lines preserved (midpoints preserved) # Affine transformation gallery $$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$ $$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$ $$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$ $$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$ $$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$ # Affine transformation gallery #### Uniform scale $$egin{bmatrix} s & 0 & 0 \ 0 & s & 0 \ 0 & 0 & 1 \end{bmatrix}$$ # Affine transformation gallery #### Nonuniform scale $$egin{bmatrix} s_x & 0 & 0 \ 0 & s_y & 0 \ 0 & 0 & 1 \end{bmatrix}$$ $$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$ $$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$ $$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$ $$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$ # Affine transformation gallery • Rotation $$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.866 & -0.5 & 0 \\ 0.5 & 0.866 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ ### Rotation about **z** axis $$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$ ### Rotation about **z** axis $$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$ ### Rotation about **x** axis $$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$ ### Rotation about **x** axis $$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$ ## Rotation about y axis $$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$ # Rotation about y axis $$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$ ### General Rotation Matrices - A rotation in 2D is around a point - A rotation in 3D is around an axis - so 3D rotation is w.r.t a line, not just a point - there are many more 3D rotations than 2D - a 3D space around a given point, not just 1D convention: positive rotation is CCW 2D convention: positive rotation is CCW when axis vector is pointing at you ### Euler angles - An object can be oriented arbitrarily - Euler angles: simply compose three coord. axis rotations - e.g. x, then y, then z: $R(\theta_x,\theta_y,\theta_z)=R_z(\theta_z)R_y(\theta_y)R_x(\theta_x)$ - 'heading, attitude, bank'(common for airplanes) - ''roll, pitch, yaw''(common for vehicles) - "pan, tilt, roll"(common for cameras) ### Euler angles - An object can be oriented arbitrarily - Euler angles: simply compose three coord. axis rotations - e.g. x, then y, then z: $R(\theta_x,\theta_y,\theta_z)=R_z(\theta_z)R_y(\theta_y)R_x(\theta_x)$ - 'heading, attitude, bank'(common for airplanes) - ''roll, pitch, yaw''(common for vehicles) - "pan, tilt, roll"(common for cameras) ### Euler angles in applications # Affine transformation gallery #### Reflection can consider it a special case of nonuniform scale # Affine transformation gallery #### Shear can still also build these from rotations and nonuniform scales | | a | | Γ1 | 0.5 | 0 | |---|---|-----------------------------------|----|-----|---| | 0 | 1 | 0 | 0 | 1 | 0 | | 0 | 0 | $\begin{bmatrix} 1 \end{bmatrix}$ | 0 | 0 | 1 | # Transforming geometry Move a subset of space using a mapping from the space to itself $$S \to \{T(\mathbf{v}) \mid \mathbf{v} \in S\}$$ - How to do this depends on how the geometry is described: - parametric (explicit) generally requires computing T - implicit generally requires computing the inverse of T ### Implicit representations Equation to tell whether we are on the curve $$\{\mathbf{v} \mid f(\mathbf{v}) = 0\}$$ • Example: line (orthogonal to **u**, distance k from **0**) $$\{\mathbf{v} \,|\, \mathbf{v} \cdot \mathbf{u} + k = 0\}$$ (**u** is a unit vector) Example: circle (center p, radius r) $$\{\mathbf{v} \mid (\mathbf{v} - \mathbf{p}) \cdot (\mathbf{v} - \mathbf{p}) - r^2 = 0\}$$ - Always define boundary of region - (if **f** is continuous) ### Examples of implicit surfaces #### Blobby models start with a smooth function of distance from a point **p**: $$f(\mathbf{x}) = g(\|\mathbf{x} - \mathbf{p}\|)$$ $$g(0) = 1$$ $$r > 1 \implies g(r) = 0$$ an implicit surface $$\{\mathbf{x} \mid f(\mathbf{x}) = 0\}$$ is a sphere, but if we add together several such primitives we can get interesting shapes $$F(\mathbf{x}) = \sum_{i} f(\mathbf{x}_i)$$ Pixar | RenderMan Artist tools ### Examples of implicit surfaces #### Isosurfaces of volumetric data volumetric data gives you a function of 3 spatial variables, such as mass density. isosurfaces of this density field generally correspond to surfaces of parts of the scanned object. the function is provided via a regular 3D grid of samples # Explicit representations - Also called parametric - Equation to map domain into plane $$\{f(t) \mid t \in D\}$$ • Example: line (containing p, parallel to u) $$\{\mathbf{p} + t\mathbf{u} \mid t \in \mathbb{R}\}$$ • Example: circle (center **b**, radius r) $$\{\mathbf{p} + r[\cos t \sin t]^T \mid t \in [0, 2\pi)\}$$ - Like tracing out the path of a particle over time - Variable t is the "parameter" ### Examples of explicit representations #### Splines univariate polynomials mapping from ID to 2D or 3D $$\mathbf{x}(t) = (p(t), q(t))$$ #### Spline surfaces bivariate polynomials mapping from 2D to 3D $$\mathbf{x}(s,t) = (p(s,t), q(s,t), r(s,t))$$ #### Triangle meshes each triangle is a linear mapping from 2D to 3D # Transforming geometry Move a subset of space using a mapping from the space to itself $$S \to \{T(\mathbf{v}) \mid \mathbf{v} \in S\}$$ Parametric representation: $$\{f(t) | t \in D\} \rightarrow \{T(f(t)) | t \in D\}$$ • Implicit representation: $$\{ \mathbf{v} | f(\mathbf{v}) = 0 \} \to \{ T(\mathbf{v}) | f(\mathbf{v}) = 0 \}$$ $$= \{ \mathbf{v} | f(T^{-1}(\mathbf{v})) = 0 \}$$ ### Properties of Matrices - Translations: linear part is the identity - Scales: linear part is diagonal - Rotations: linear part is orthogonal - columns of R are mutually orthonormal: $R^T R = I$ - $-\,$ rows of R are also mutually orthonormal: $RR^T=I$ - also, determinant of R is 1.0: $\det R = 1$ (distinguishes rotations from reflections) ### General affine transformations - The previous slides showed "canonical" examples of the types of affine transformations - Generally, transformations contain elements of multiple types - often define them as products of canonical transforms - sometimes work with their properties more directly rotate, then translate translate, then rotate scale, then rotate rotate, then scale # Rigid motions - A transform made up of only translation and rotation is a rigid motion or a rigid body transformation - The linear part is an orthonormal matrix $$R = \begin{bmatrix} Q & \mathbf{u} \\ 0 & 1 \end{bmatrix}$$ - Inverse of orthonormal matrix is transpose - so inverse of rigid motion is easy: $$R^{-1}R = \begin{bmatrix} Q^T & -Q^T\mathbf{u} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} Q & \mathbf{u} \\ 0 & 1 \end{bmatrix}$$ - Want to rotate about a particular point - could work out formulas directly... - Know how to rotate about the origin - so translate that point to the origin $$M = T^{-1}RT$$ - Want to rotate about a particular point - could work out formulas directly... - Know how to rotate about the origin - so translate that point to the origin $$M = T^{-1}RT$$ - Want to rotate about a particular point - could work out formulas directly... - Know how to rotate about the origin - so translate that point to the origin $$M = T^{-1}RT$$ - Want to rotate about a particular point - could work out formulas directly... - Know how to rotate about the origin - so translate that point to the origin $$M = T^{-1}RT$$ - Want to scale along a particular axis and point - Know how to scale along the y axis at the origin - so translate to the origin and rotate to align axes $$M = T^{-1}R^{-1}SRT$$ - Want to scale along a particular axis and point - Know how to scale along the y axis at the origin - so translate to the origin and rotate to align axes $$M = T^{-1}R^{-1}SRT$$ - Want to scale along a particular axis and point - Know how to scale along the y axis at the origin - so translate to the origin and rotate to align axes $$M = T^{-1}R^{-1}SRT$$ - Want to scale along a particular axis and point - Know how to scale along the y axis at the origin - so translate to the origin and rotate to align axes $$M = T^{-1}R^{-1}SRT$$ - Want to scale along a particular axis and point - Know how to scale along the y axis at the origin - so translate to the origin and rotate to align axes $$M = T^{-1}R^{-1}SRT$$ - Want to scale along a particular axis and point - Know how to scale along the y axis at the origin - so translate to the origin and rotate to align axes $$M = T^{-1}R^{-1}SRT$$ ### Transforming points and vectors #### Recall distinction points vs. vectors - vectors are just offsets (differences between points) - points have a location - represented by vector offset from a fixed origin #### Points and vectors transform differently points respond to translation; vectors do not $$\mathbf{v} = \mathbf{p} - \mathbf{q}$$ $$T(\mathbf{x}) = M\mathbf{x} + \mathbf{t}$$ $$T(\mathbf{p} - \mathbf{q}) = M\mathbf{p} + \mathbf{t} - (M\mathbf{q} + \mathbf{t})$$ $$= M(\mathbf{p} - \mathbf{q}) + (\mathbf{t} - \mathbf{t}) = M\mathbf{v}$$ # Transforming points and vectors #### Homogeneous coords. let us exclude translation just put 0 rather than 1 in the last place $$\begin{bmatrix} M & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} M\mathbf{p} + \mathbf{t} \\ 1 \end{bmatrix} \quad \begin{bmatrix} M & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix} = \begin{bmatrix} M\mathbf{v} \\ 0 \end{bmatrix}$$ and note that subtracting two points cancels the extra coordinate, resulting in a vector! #### Preview: projective transformations - what's really going on with this last coordinate? - think of \mathbb{R}^2 embedded in \mathbb{R}^3 : all affine xfs. preserve $\mathbf{z}=1$ plane - could have other transforms; project back to z=1 ### Transforming normal vectors #### Transforming surface normals - differences of points (and therefore tangents) transform OK - normals do not; therefore use inverse transpose matrix have: $\mathbf{t} \cdot \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$ want: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T X\mathbf{n} = 0$ so set $X = (M^T)^{-1}$ then: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T (M^T)^{-1} \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$ ### Transforming normal vectors #### Transforming surface normals - differences of points (and therefore tangents) transform OK - normals do not; therefore use inverse transpose matrix have: $\mathbf{t} \cdot \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$ want: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T X\mathbf{n} = 0$ so set $X = (M^T)^{-1}$ then: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T (M^T)^{-1} \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$ # More math background #### Coordinate systems - Expressing vectors with respect to bases - Linear transformations as changes of basis #### Six degrees of freedom - Coordinate frame: point plus basis - Interpretation: transformation changes representation of point from one basis to another - "Frame to canonical" matrix has frame in columns - takes points represented in frame - represents them in canonical basis - e.g. [0 0], [1 0], [0 1] - Seems backward but bears thinking about $$\begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{p} \\ 0 & 0 & 1 \end{bmatrix}$$ #### A new way to "read off" the matrix - e.g. shear from earlier - can look at picture, see effect on basis vectors, write down matrix #### Also an easy way to construct transforms e. g. scale by 2 across direction (1,2) - When we move an object to the canonical frame to apply a transformation, we are changing coordinates - the transformation is easy to express in object's frame - so define it there and transform it $$T_e = FT_F F^{-1}$$ - T_e is the transformation expressed wrt. $\{e_1, e_2\}$ - $-T_F$ is the transformation expressed in natural frame - \mathbf{F} is the frame-to-canonical matrix $[\mathbf{u} \ \mathbf{v} \ \mathbf{p}]$ - This is a similarity transformation ### Building general rotations #### Using elementary transforms you need three - translate axis to pass through origin - rotate about y to get into x-y plane - rotate about z to align with x axis #### Alternative: construct frame and change coordinates - choose p, u, v, w to be orthonormal frame with p and u matching the rotation axis - apply similarity transform $T = F R_x(\theta) F^{-1}$ ### Coordinate frame summary - Frame = point plus basis - Frame matrix (frame-to-canonical) is $$F = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{p} \\ 0 & 0 & 1 \end{bmatrix}$$ Move points to and from frame by multiplying with F $$p_e = F p_F \quad p_F = F^{-1} p_e$$ Move transformations using similarity transforms $$T_e = FT_F F^{-1}$$ $T_F = F^{-1} T_e F$ #### Orthonormal frames in 3D - Useful tools for constructing transformations - Recall rigid motions - affine transforms with pure rotation - columns (and rows) form right handed ONB - that is, an orthonormal basis $$F = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{p} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$ # Building 3D frames #### Given a vector a and a secondary vector b - The **u** axis should be parallel to **a**; the **u**-**v** plane should contain **b** - u = a / ||a|| - $w = u \times b$; w = w / ||w|| - $\mathbf{v} = \mathbf{w} \times \mathbf{u}$ #### Given just a vector a - The u axis should be parallel to a; don't care about orientation about that axis - Same process but choose arbitrary **b** first - Good choice is not near a: e.g. set smallest entry to I # Building transforms from points - 2D affine transformation has 6 degrees of freedom (DOFs) - this is the number of "knobs" we have to set to define one - So, 6 constraints suffice to define the transformation - handy kind of constraint: point **p** maps to point **q** (2 constraints at once) - three point constraints add up to constrain all 6 DOFs (i.e. can map any triangle to any other triangle) - 3D affine transformation has 12 degrees of freedom - count them from the matrix entries we're allowed to change - So, 12 constraints suffice to define the transformation - in 3D, this is 4 point constraints (i.e. can map any tetrahedron to any other tetrahedron)