JTextures and normals
N ray tracing

CS 4620 Lecture 6

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner * |

lexture mapping

* Objects have properties that vary across the surface

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner 2

lexture Mapping

* So we make the shading
parameters vary across
the surface

Cornell CS4620 Spring 2017 « Lecture 6

[Foley et al./ Perlin]

© 2017 Steve Marschner * 3

lexture mapping

* Adds visual complexity; makes appealing images

Cornell CS4620 Spring 2017 « Lecture 6

[P

© 2017 Steve Marschner » 4

lexture mapping

* Surface properties are not the same everywhere
— diffuse color (kq) varies due to changing pigmentation

— brightness (ks) and sharpenss (p) of specular highlight varies due to
changing roughness and surface contamination

* Want functions that assign properties to points on the surface
— the surface i1s a 2D domain
— glven a surface parameterization, just need function on plane
— Images are a handy way to represent such functions
— can represent using any image representation

— raster texture images are very popular

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner » 5

A first definrtion

Texture mapping: a technique of
defining surface properties (especially
shading parameters) in such a way that
they vary as a function of position on
the surface.

* This is very simple!
— but 1t produces complex-looking effects

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner » 6

-Xamples

* Wood gym floor with smooth finish
— diffuse color kp varies with position
— specular properties kg, n are constant
* Glazed pot with finger prints

— diffuse and specular colors kp, k¢ are constant
— specular exponent n varies with position
* Adding dirt to painted surfaces

* Simulating stone, fabric, ...
— to approximate effects of small-scale geometry
— they look flat but are a lot better than nothing

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner » 7

Mapping textures to surfaces

* Usually the texture is an image (function of u, v)

— the big question of texture mapping: where on the surface does
the iImage go!

— obvious only for a flat rectangle the same shape as the image
— otherwise more interesting

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner * |2

Mapping textures to surfaces

e ‘““Putting the image on the surface”
— this means we need a function f that tells where each point on the
Image goes
— this looks a lot

ike a parametric
surface function

— for parametric
surfaces (e.g.
sphere, cylinder)
you get f for free

p D Sunbnie 8

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner * 13

Texture coordinate functions

* Non-parametrically defined surfaces: more to do

— can't assign texture coordinates as we generate the surface
— need to have the inverse of the function f

e Texture
coordinate fn. b 5
¢:S — R? 3 |
— when shading p e ¢
|
get texture at s “(‘w&r
o(p) : q;
2D fextel
clowxm:/\
P 30 5KV‘<F"C€ s

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner * |4

[hree spaces

* Surface lives in 3D world space

* Every point also has a place where it goes
in the image and in the texture.

image space world space texture space

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner * |5

Texture coordinate functions

* Define texture image as a function

T:D—C
— where Cis the set of colors for the diffuse component
* Diffuse color (for example) at point p is then

kp(p) = T(¢(p))

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner * |6

Coordinate functions: parametric

* For parametric surfaces you already have coordinates
* Need to be able to invert the parameterization
 E.g. for a rectangle...

 E.g. for a sphere...

Aside: parametric
vs. iImplicit
VS. plecewise
surface models

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner * |7

-xamples of coordinate functions

* Planar projection

\

§/>
=
uk\
)\f‘,

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner * |8

-xamples of coordinate functions

* Spherical projection

Cornell CS4620 Spring 2017 « Lecture 6 © 2017 Steve Marschner * |19

-xamples of coordinate functions

e Cylindrical projection

spherical > cylindrical

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner * 20

-xamples of coordinate functions

« Complex surfaces: project parts to parametric surfaces

box #——f»_

mapping

cylindrical
mapping

mapping

[Tito Pagan]

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner * 21

-xamples of coordinate functions

* Triangles
— specify (u,v) for each vertex
— define (u,v) for interior by linear (barycentric) interpolation

(UeVe)

(UgVy)

(u b’Vb)

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner * 22

JTexture coordinates on meshes

* Texture coordinates become per-vertex data like vertex
positions

— can think of them as a second position: each vertex has a position
in 3D space and in 2D texure space

* How to come up with vertex (u,v)s!?
— use any or all of the methods just discussed

— In practice this i1s how you implement those for curved surfaces
approximated with triangles

— use some kind of optimization

—try to choose vertex (u,v)s to result in a smooth, low distortion
map

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner * 23

u firetruck - UYMapper Pro

File Edt Select Map Tools Texture Yew

(|| [S]y II_‘EIEI:I ola|so|o] 2|

~xample: UVMapper

http://www.uvmapper.com

l.-‘ head - UVMapper Pro

Eile Edt Select Map Tools Tegture Yew bHeb

e | » oz ["E o olalslola] @

EBEBODBBO
IEZOB0B0B

m’f vickhead - UVMapper Pro

fle Edt Select Mep Tocks Texture Yew Hebp

=@ [MKz [ool e olels|ols| @

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner * 24

http://www.uvmapper.com

Texture coordinate functions

* Mapping from $ to D can be many-to-one
— that Is, every surface point gets only one color assigned

— but it 1s OK (and In fact useful) for multiple surface points to be
mapped to the same texture point

— e.g. repeating tiles

le\y - jo— ont J C-C/.
—;ar A %‘7".&:/ o xdea v

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner ¢ 25

Pixels In texture images (texels)

* Related to texture coordinates in the same way as normalized

image coordinate to pixel coordinates

; v=1
“_J |
j=25
()(0/2) @) O 0(3,2)
o) o) o) o) <
0.1)
Fany O Y Y i > v — O
100.0) ~(1,0) 2ol T30 - —
s L g
" e
| o)
" LI for an image of
1 =un, — 0.5 .
nx by ny pixels
J=vn, —0.5

Cornell CS4620 Spring 2017 « Lecture 6

© 2017 Steve Marschner * 26

[exture lookups and wrapping

* In shading calculation, when you need a texture value you
perform a texture lookup

* Convert (u, v) texture coordinates to (i,) texel coordinates,
and read a value from the image
— simplest: round to nearest (nearest neighbor lookup)
— various ways to be smarter and get smoother results

* What if i and j are out of range!
— option |, clamp: take the nearest pixel that I1s In the image
ipixel — maX(07 mln(nx —]-7 Z.lookup))

— option 2, wrap: treat the texture as periodic, so that falling off the right
side causes the look up to come In the left

ipixel = remainder(iookup; Nz)

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner » 27

Wrapping modes

clamp wrap

Cornell CS4620 Spring 2017 » Lecture 6 © 2017 Steve Marschner * 28

