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Textures and normals 
in ray tracing
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• Objects have properties that vary across the surface
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Texture mapping
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• So we make the shading  
parameters vary across 
the surface
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Texture Mapping
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• Adds visual complexity; makes appealing images

[P ix
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Texture mapping
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• Surface properties are not the same everywhere 
– diffuse color (kd) varies due to changing pigmentation
– brightness (ks) and sharpenss (p) of specular highlight varies due to 

changing roughness and surface contamination
• Want functions that assign properties to points on the surface 

– the surface is a 2D domain
– given a surface parameterization, just need function on plane
– images are a handy way to represent such functions
– can represent using any image representation
– raster texture images are very popular
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Texture mapping
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• This is very simple! 
– but it produces complex-looking effects
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Texture mapping: a technique of 
defining surface properties (especially 
shading parameters) in such a way that 
they vary as a function of position on 
the surface.

A first definition
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• Wood gym floor with smooth finish 

– diffuse color kD varies with position
– specular properties kS, n are constant

• Glazed pot with finger prints 

– diffuse and specular colors kD, kS are constant
– specular exponent n varies with position

• Adding dirt to painted surfaces 
• Simulating stone, fabric, … 

– to approximate effects of small-scale geometry
– they look flat but are a lot better than nothing
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Examples
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• Usually the texture is an image (function of u, v) 
– the big question of texture mapping: where on the surface does 

the image go?
– obvious only for a flat rectangle the same shape as the image
– otherwise more interesting
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Mapping textures to surfaces
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• “Putting the image on the surface” 
– this means we need a function f that tells where each point on the 

image goes
– this looks a lot 

like a parametric 
surface function

– for parametric 
surfaces (e.g.  
sphere, cylinder) 
you get f for free
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Mapping textures to surfaces
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• Non-parametrically defined surfaces: more to do 
– can’t assign texture coordinates as we generate the surface
– need to have the inverse of the function f

• Texture  
coordinate fn. 

– when shading p  
get texture at 
φ(p)
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Texture coordinate functions
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• Surface lives in 3D world space 
• Every point also has a place where it goes  

in the image and in the texture.
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Three spaces
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• Define texture image as a function 

– where C is the set of colors for the diffuse component
• Diffuse color (for example) at point p is then
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Texture coordinate functions
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• For parametric surfaces you already have coordinates 
• Need to be able to invert the parameterization 
• E.g. for a rectangle… 
• E.g. for a sphere…
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Coordinate functions: parametric
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Aside: parametric  
vs. implicit  

vs. piecewise  
surface models



• Planar projection

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 6

Examples of coordinate functions
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• Spherical projection
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Examples of coordinate functions
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• Cylindrical projection
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Examples of coordinate functions
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spherical cylindrical



• Complex surfaces: project parts to parametric surfaces
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Examples of coordinate functions
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• Triangles 
– specify (u,v) for each vertex
– define (u,v) for interior by linear (barycentric) interpolation

(u,v)

(uc,vc)

(ub,vb)

(ua,va)
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Examples of coordinate functions

22



• Texture coordinates become per-vertex data like vertex 
positions 
– can think of them as a second position: each vertex has a position 

in 3D space and in 2D texure space
• How to come up with vertex (u,v)s? 

– use any or all of the methods just discussed
– in practice this is how you implement those for curved surfaces 

approximated with triangles
– use some kind of optimization

– try to choose vertex (u,v)s to result in a smooth, low distortion 
map
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Texture coordinates on meshes
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http://www.uvmapper.com
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Example: UVMapper
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http://www.uvmapper.com


• Mapping from S to D can be many-to-one 
– that is, every surface point gets only one color assigned
– but it is OK (and in fact useful) for multiple surface points to be 

mapped to the same texture point
– e.g. repeating tiles
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Texture coordinate functions

25



i = un
x

� 0.5

j = v n
y

� 0.5

• Related to texture coordinates in the same way as normalized 
image coordinate to pixel coordinates
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Pixels in texture images (texels)
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58 3. Raster Images

Figure 3.10. Coordinates of a four pixel by three pixel screen. Note that in some APIs the
y-axis will point downwards.

Again, these coordinates are simply conventions, but they will be important

to remember later when implementing cameras and viewing transformations.

3.2.1 Pixel Values

So far we have described the values of pixels in terms of real numbers, represent-

ing intensity (possibly separately for red, green, and blue) at a point in the image.

This suggests that images should be arrays of floating-point numbers, with either

one (for grayscale, or black and white, images) or three (for RGB color images)

32-bit floating point numbers stored per pixel. This format is sometimes used,

when its precision and range of values are needed, but images have a lot of pix-

els and memory and bandwidth for storing and transmitting images are invariably

scarce. Just one ten-megapixel photograph would consume about 115 MB of

RAM in this format.Why 115 MB and not 120
MB?

Less range is required for images that are meant to be displayed directly.

While the range of possible light intensities is unbounded in principle, any given

device has a decidedly finite maximum intensity, so in many contexts it is per-

fectly sufficient for pixels to have a bounded range, usually taken to be [0, 1] for
simplicity. For instance, the possible values in an 8-bit image are 0, 1/255, 2/255, . . . , 254/255, 1.The denominator of 255,

rather than 256, is
awkward, but being able to
represent 0 and 1 exactly is
important.

Images stored with floating point numbers, allowing a wide range of values, are

often called high dynamic range (HDR) images to distinguish them from fixed-

range, or low dynamic range (LDR) images that are stored with integers. See
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• In shading calculation, when you need a texture value you 
perform a texture lookup

• Convert (u, v) texture coordinates to (i, j) texel coordinates, 
and read a value from the image
– simplest: round to nearest (nearest neighbor lookup)
– various ways to be smarter and get smoother results

• What if i and j are out of range?
– option 1, clamp: take the nearest pixel that is in the image

– option 2, wrap: treat the texture as periodic, so that falling off the right 
side causes the look up to come in the left
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Texture lookups and wrapping
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Wrapping modes
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