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Triangle meshes 2

CS 4620 Lecture 3
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Practical encoding of meshes
• OBJ file format 

– widely used format for polygon meshes
– supports the usual attributes: position, normal, texture coordinate
– allows triangles or polygons (only triangles and quads widely supported)
– particularly flexible about controlling continuity of attributes
– comes with a crude mechanism for adding materials

• Demo 
– simple file with one triangle
– effects of normals and texture coords
– exploration of continuity and discontinuity
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Simple computations with meshes
• Smoothing 

– Idea 1: move each vertex to the average of all neighboring vertices
– Idea 2: move each vertex partway towards the avg. of its neighbors
– there are many fancier ways to do this but with similar flavor

• Computing normals 
– Idea 1: faces already have normals; just use those.
– Idea 2: set normal @ each vertex to the average of the 

neighboring triangles’ normals
– Idea 3: …to a weighted avg. of the neighboring triangles’ normals

• weight by area
• weight by angle

3
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Ops. that change mesh topology
• Mesh simplification 

– popular approach based on edge-collapse operations:

4

Figure 4: A sequence of approximations generated using our algorithm. The original model on the left has 5,804 faces. The approximations
to the right have 994, 532, 248, and 64 faces respectively. Note that features such as horns and hooves continue to exist through many simpli-
fications. Only at extremely low levels of detail do they begin to disappear.

5 Deriving Error Quadrics
To construct our error quadrics, we must choose a heuristic to char-
acterize the geometric error. We have selected a heuristic which is
quite similar to the one given by Ronfard and Rossignac [7]. Fol-
lowing [7], we can observe that in the original model, each vertex
is the solution of the intersection of a set of planes — namely, the
planes of the triangles that meet at that vertex. We can associate a
set of planes with each vertex, and we can define the error of the
vertex with respect to this set as the sum of squared distances to its
planes:

1(v) = 1([vx vy vz 1]T) =

X

p2planes(v)

(pTv)2 (2)

where p = [a b c d]T represents the plane defined by the equation
ax+ by+ cz+ d = 0 where a2 + b2 + c2 = 1. This approximate
error metric is similar to [7], although we have used a summation
rather than a maximum over the set of planes. The set of planes at a
vertex is initialized to be the planes of the triangles that meet at that
vertex. Note that if wewere to track these plane sets explicitly, as [7]
did, we would propagate planes after a contraction (v1,v2) ! v̄ us-
ing the rule: planes(v̄) = planes(v1) [ planes(v2). This can require
a sizeable amount of storage that does not diminish as simplification
progresses.
The error metric given in (2) can be rewritten as a quadratic form:

1(v) =
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p2planes(v)

(vTp)(pTv)

=
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where Kp is the matrix:

Kp = ppT =

2
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This fundamental error quadric Kp can be used to find the squared
distance of any point in space to the plane p. We can sum these fun-
damental quadrics together and represent an entire set of planes by
a single matrix Q.
We implicitly track sets of planes using a single matrix; instead

of computing a set union (planes(v1) [ planes(v2)) we simply add
two quadrics (Q1 + Q2). If the sets represented by Q1 and Q2 in
the original metric are disjoint, the quadric addition is equivalent to
the set union. If there is some overlap, then a single plane may be
counted multiple times. However, any single plane can be counted
at most 3 times since each plane is initially distributed only to the

vertices of its defining triangle. This may introduce some impreci-
sion into the error measurement, but it has major benefits: the space
required to track a plane set is only that required for a 4⇥4 symmet-
ric matrix (10 floating point numbers), and the cost of updating the
approximation is only that for adding two such matrices. If we are
willing to sacrifice some additional storage, it would even be possi-
ble to eliminate this multiple counting using an inclusion-exclusion
formula.
Thus, to compute the initialQmatrices required for our pair con-

traction algorithm, each vertex must accumulate the planes for the
triangles which meet at that vertex. For each vertex, this set of
planes defines several fundamental error quadrics Kp. The error
quadric Q for this vertex is the sum of the fundamental quadrics.
Note that the initial error estimate for each vertex is 0, since each
vertex lies in the planes of all its incident triangles.

5.1 Geometric Interpretation
As we will see, our plane-based error quadrics produce fairly high
quality approximations. In addition, they also possess a useful geo-
metric meaning3.
The level surfaces of these quadrics are almost always ellipsoids.

In some circumstances, the level surfaces may be degenerate. For
instance, parallel planes (e.g., around a planar surface region) will
produce level surfaces which are two parallel planes, and planes
which are all parallel to a line (e.g., around a linear surface crease)
will produce cylindrical level surfaces. The matrix used for find-
ing optimal vertex positions (Eq. 1) will be invertible as long as the
level surfaces are non-degenerate ellipsoids. In this case, v̄ will be
at the center of the ellipsoid.

6 Additional Details
The general algorithm outlined so far performs well on most mod-
els. However, there are a few important enhancements which im-
prove its performance on certain types ofmodels, particularly planar
models with open boundaries.

Preserving Boundaries. The error quadrics derived earlier do
not make any allowance for open boundaries. For models such as
terrain height fields, it is necessary to preserve boundary curves
while simplifying their shape. We might also wish to preserve dis-
crete color discontinuities. In such cases, we initially label each
edge as either normal or as a “discontinuity”. For each face sur-
rounding a particular discontinuity edge, we generate a perpendic-
ular plane running through the edge. These constraint planes are
then converted into quadrics, weighted by a large penalty factor, and

3Kalvin and Taylor [5] describe a somewhat similar use of quadrics to
represent plane sets. They were tracking sets of planes which fit a set of
points within some tolerance. They used ellipsoids in plane-space to rep-
resent the set of valid approximating planes.
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Figure 1: Edge contraction. The highlighted edge is contracted
into a single point. The shaded triangles become degenerate and are
removed during the contraction.

ing attention. Several different algorithms have been formulated for
simplifying surfaces. Those algorithms which are most relevant to
our work can be broadly categorized into 3 classes:

Vertex Decimation. Schroeder et al. [9] describe an algorithm
which we would term vertex decimation. Their method iteratively
selects a vertex for removal, removes all adjacent faces, and retri-
angulates the resulting hole. Soucy and Laurendeau [10] described
a more sophisticated, but essentially similar algorithm. While they
provide reasonable efficiency and quality, these methods are not re-
ally suited for our purpose. Both methods use vertex classification
and retriangulation schemes which are inherently limited to mani-
fold surfaces, and they carefully maintain the topology of the model.
While these are important features in some domains, they are restric-
tions for multiresolution rendering systems.

Vertex Clustering. The algorithm described by Rossignac and
Borrel [8] is one of the few capable of processing arbitrary polygo-
nal input. A bounding box is placed around the original model and
divided into a grid. Within each cell, the cell’s vertices are clustered
together into a single vertex, and the model faces are updated ac-
cordingly. This process can be very fast, and can make drastic topo-
logical alterations to the model. However, while the size of the grid
cells does provide a geometric error bound, the quality of the out-
put is often quite low. In addition, it is difficult to construct an ap-
proximation with a specific face count, since the number of faces
is only indirectly determined by the specified grid dimensions. The
exact approximation produced is also dependent on the exact posi-
tion and orientation of the original model with respect to the sur-
rounding grid. This uniformmethod can easily be generalized to use
an adaptive grid structure, such as an octree [6]. This can improve
the simplification results, but it still does not support the quality and
control that we desire.

Iterative Edge Contraction. Several algorithms have been
published that simplify models by iteratively contracting edges (see
Figure 1). The essential difference between these algorithms lies in
how they choose an edge to contract. Some notable examples of
such algorithms are those of Hoppe [4, 3], Ronfard and Rossignac
[7], and Guéziec [2]. These algorithms all seem to have been de-
signed for use on manifold surfaces, although edge contractions can
be utilized on non-manifold surfaces. By performing successive
edge contractions, they can close holes in the object but they can-
not join unconnected regions.
If it is critical that the approximate model lie within some dis-

tance of the original model and that its topology remain unchanged,
the simplification envelopes technique of Cohen et al. [1] can be
used in conjunction with one of the above simplification algorithms.
As long as any modification made to the model is restricted to lie
within the envelopes, a global error guarantee can be maintained.
However, while this provides strong error limits, the method is in-
herently limited to orientable manifold surfaces and carefully pre-

contract
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Figure 2: Non-edge contraction. When non-edge pairs are con-
tracted, unconnected sections of the model are joined. The dashed
line indicates the two vertices being contracted together.

serves model topology. Again, these are often limitations for the
purposes of simplification for rendering.
None of these previously developed algorithms provide the com-

bination of efficiency, quality, and generality that we desire. Vertex
decimation algorithms are unsuitable for our needs; they are careful
to maintain model topology and usually assumemanifold geometry.
Vertex clustering algorithms are very general and can be very fast.
However, they provide poor control over their results and these re-
sults can be of rather low quality. Edge contraction algorithms can
not support aggregation.
We have developed an algorithm which supports both aggrega-

tion and high quality approximations. It possesses much of the gen-
erality of vertex clustering as well as the quality and control of itera-
tive contraction algorithms. It also allows faster simplification than
some higher quality methods [3].

3 Decimation via Pair Contraction
Our simplification algorithm is based on the iterative contraction of
vertex pairs; a generalization of the iterative edge contraction tech-
nique used in previous work. A pair contraction, which we will
write (v1,v2) ! v̄, moves the vertices v1 and v2 to the new posi-
tion v̄, connects all their incident edges to v1, and deletes the vertex
v2. Subsequently, any edges or faces which have become degenerate
are removed. The effect of a contraction is small and highly local-
ized. If (v1,v2) is an edge, then 1 or more faces will be removed
(see Figure 1). Otherwise, two previously separate sections of the
model will be joined at v̄ (see Figure 2).
This notion of contraction is in fact quite general; we can con-

tract a set of vertices into a single vertex: (v1,v2, . . . ,vk ) ! v̄. This
form of generalized contraction can express both pair contractions
as well as more general operations such as vertex clustering. How-
ever, we use pair contraction as the atomic operation of our algo-
rithm because it is the most fine-grained contraction operation.
Startingwith the initialmodel Mn, a sequence of pair contractions

is applied until the simplification goals are satisfied and a final ap-
proximation Mg is produced. Because each contraction corresponds
to a local incremental modification of the current model, the algo-
rithm actually generates a sequence of models Mn,Mn�1, . . . ,Mg.
Thus, a single run can produce a large number of approximate mod-
els or a multiresolution representation such as a progressive mesh
[3].

3.1 Aggregation
The primary benefit which we gain by utilizing general vertex pair
contractions is the ability of the algorithm to join previously uncon-
nected regions of the model together. A potential side benefit is that
it makes the algorithm less sensitive to the mesh connectivity of the
original model. If in fact two faces meet at a vertex which is dupli-
cated, the contraction of that pair of vertices will repair this short-
coming of the initial mesh.
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Queries on meshes
• For face, find all: 

– vertices
– edges
– neighboring faces

• For vertex, find all: 
– incident edges
– incident triangles
– neighboring vertices

• For edge, find: 
– two adjacent faces
– two adjacent vertices

5

useful for smoothing/normal operations, 
if you want to compute them one vertex  
at a time (all at once is easier!)

most of these ops. required to implement 
edge-collapse-based simplification
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Triangle neighbor structure
• Extension to indexed  

triangle set 
• Triangle points to its three  

neighboring triangles 
• Vertex points to a single  

neighboring triangle 
• Can now enumerate  

triangles around a vertex
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Triangle neighbor structure

7

Triangle { 
Triangle nbr[3]; 
Vertex vertex[3]; 
} 

// t.neighbor[i] is adjacent 
// across the edge from i to i+1 

Vertex { 
// ... per-vertex data ... 
Triangle t;  // any adjacent tri 
} 

// ... or ... 

Mesh { 
// ... per-vertex data ... 
int tInd[nt][3];  // vertex indices 
int tNbr[nt][3]; // indices of neighbor triangles 
int vTri[nv]; // index of any adjacent triangle 
}
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Triangle neighbor structure
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Triangle neighbor structure
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Triangle neighbor structure

9

TrianglesOfVertex(v) { 
t = v.t; 
do { 

find t.vertex[i] == v; 
t = t.nbr[pred(i)]; 
} while (t != v.t); 

} 

pred(i) = (i+2) % 3; 
succ(i) = (i+1) % 3;
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Triangle neighbor structure
• indexed mesh was 36 bytes per vertex 
• add an array of triples of indices (per triangle) 

– int[nT][3]: about 24 bytes per vertex 
• 2 triangles per vertex (on average)
• (3 indices x 4 bytes) per triangle

• add an array of representative triangle per vertex 

– int[nV]: 4 bytes per vertex 
• total storage: 64 bytes per vertex 

– still not as much as separate triangles

10
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Triangle neighbor structure—refined

11

Triangle { 
Edge nbr[3]; 
Vertex vertex[3]; 
} 

// if t.nbr[i].i == j 
// then t.nbr[i].t.nbr[j] == t 

Edge { 
// the i-th edge of triangle t 
Triangle t; 
int i;  // in {0,1,2} 
// in practice t and i share 32 bits 
} 

Vertex { 
// ... per-vertex data ... 
Edge e;  // any edge leaving vertex 
}

T0.nbr[0] = { T1, 2 } 
T1.nbr[2] = { T0, 0 } 
V0.e = { T1, 0 }
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Triangle neighbor structure

12

TrianglesOfVertex(v) { 
{t, i} = v.e; 
do { 

{t, i} = t.nbr[pred(i)]; 
} while (t != v.t); 

} 

pred(i) = (i+2) % 3; 
succ(i) = (i+1) % 3;

T0.nbr[0] = { T1, 2 } 
T1.nbr[2] = { T0, 0 } 
V0.e = { T1, 0 }
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Winged-edge mesh
• Edge-centric rather than  

face-centric 
– therefore also works for 

polygon meshes
• Each (oriented) edge points to: 

– left and right forward edges
– left and right backward edges
– front and back vertices
– left and right faces

• Each face or vertex points to  
one edge

13
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Winged-edge mesh

14

Edge { 
Edge hl, hr, tl, tr; 
Vertex h, t; 
Face l, r; 
} 

Face { 
// per-face data 
Edge e;  // any adjacent edge 
} 

Vertex { 
// per-vertex data 
Edge e;  // any incident edge 
}

hl hr

tl tr

l

h

t

r
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Winged-edge structure
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Winged-edge structure

15

EdgesOfFace(f) { 
e = f.e; 
do { 

if (e.l == f) 
e = e.hl; 

else 
e = e.tr; 

} while (e != f.e); 
}
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Winged-edge structure

15

EdgesOfVertex(v) { 
e = v.e; 
do { 

if (e.t == v) 
e = e.tl; 

else 
e = e.hr; 

} while (e != v.e); 
}
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Winged-edge structure
• array of vertex positions: 12 bytes/vert 
• array of 8-tuples of indices (per edge) 

– head/tail left/right edges + head/tail verts + left/right tris
– int[nE][8]: about 96 bytes per vertex 

• 3 edges per vertex (on average)
• (8 indices x 4 bytes) per edge

• add a representative edge per vertex 

– int[nV]: 4 bytes per vertex
• total storage: 112 bytes per vertex 

– but it is cleaner and generalizes to polygon meshes

16
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Winged-edge optimizations
• Omit faces if not needed 
• Omit one edge pointer  

on each side 
– results in one-way traversal

17
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• Simplifies, cleans up winged edge 
– still works for polygon meshes

• Each half-edge points to: 
– next edge (left forward)
– next vertex (front)
– the face (left)
– the opposite half-edge

• Each face or vertex points to  
one half-edge

Half-edge structure

18
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Half-edge structure

19

HEdge { 
HEdge pair, next; 
Vertex v; 
Face f; 
} 

Face { 
// per-face data 
HEdge h;  // any adjacent h-edge 
} 

Vertex { 
// per-vertex data 
HEdge h;  // any incident h-edge 
}

f

v

next pair
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Half-edge structure
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Half-edge structure

20



© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 7

Half-edge structure

20

EdgesOfFace(f) { 
h = f.h; 
do { 

h = h.next; 
} while (h != f.h); 

}
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Half-edge structure

20

EdgesOfVertex(v) { 
h = v.h; 
do { 

h = h.next.pair; 
} while (h != v.h); 

}
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Half-edge structure
• array of vertex positions: 12 bytes/vert 
• array of 4-tuples of indices (per h-edge) 

– next, pair h-edges + head vert + left tri
– int[2nE][4]: about 96 bytes per vertex 

• 6 h-edges per vertex (on average)
• (4 indices x 4 bytes) per h-edge

• add a representative h-edge per vertex 

– int[nV]: 4 bytes per vertex
• total storage: 112 bytes per vertex

21
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• Omit faces if not needed 
• Use implicit pair pointers 

– they are allocated in pairs
– they are even and odd in an array

• Result: 2 indices per HEdge 
– HEdges are 48 bytes/vertex
– total 64 bytes/vertex 

(same as triangle neighbor)

Half-edge optimizations

22


