
RUST: A COUSIN OF C++ WITH
BETTER MEMORY PROTECTION

Professor Ken Birman
CS4414 Lecture 27

CORNELL CS4414 - FALL 2024 1

IDEA MAP FOR TODAY

CORNELL CS4414 - FALL 2024 2

Many attacks exploit weak memory protection

C++ is built on C… and C is fundamentally unsafe

Rust idea How well does it work? What are the criticisms of Rust?

Today’s entire lecture borrows heavily from a lecture open-
sourced by Prof. Wu-chang Feng at Portland State University,
where they use Rust as their systems programming language

C++ IS DEEPLY CONNECTED TO C

After templates are expanded and constexpr is resolved, C++
“transforms” to a C program for compilation. The template
language is a true programming language with compile-time loops,
conditional statements, function calls. Yet it reduces to “plain old C.”

Thus, many weaknesses of C translate to vulnerabilities in C++

To compensate we use logical reasoning to ensure safety and
Valgrind as a debugging tool (but Valgrind is very slow)

CORNELL CS4414 - FALL 2024 3

C (THE GOOD PARTS)

Efficient code especially in resource-constrained environments

Direct control over hardware such as network interfaces and GPUs

Performance over safety
 Memory managed manually (“wrap” C++ pointers to improve safety)
 No periodic garbage collection (instead, each call to free incrementally
 updates the heap)
 Favored by advanced programmers: total control

CORNELL CS4414 - FALL 2024 4

BUT…

Even with this help, both C and C++ make it very easy to make
mistakes involving misuse of pointers.

C also has issues with type coercion (C++ fixes them!):
 Integer promotion/coercion errors (where the code specifies the size
 of an integer, but then uses it in a way inconsistent with the size)
 Unsigned vs. signed errors (in C, conversions back and forth are legal
 and won’t even trigger a warning… C++ will warn)
 Integer casting errors (easy to misunderstand the rules)

CORNELL CS4414 - FALL 2024 5

AND… IN BOTH C AND C++…

Memory pointer errors are very easy to make
 Dereferencing a null pointer
 Buffer overflows, out-of-bound access (no array-bounds checking)
 Format string errors in printf or std::cout
 Dynamic memory errors (Memory leaks, use-after-free (dangling pointer),
 double free of a pointer)

All of these can cause software crashes and security vulnerabilities.

CORNELL CS4414 - FALL 2024 6

EXAMPLE: C-STYLE POINTERS IN C OR C++
Lightweight, low-level control of memory

CORNELL CS4414 - FALL 2024 7

typedef struct { int a; int b; } Dummy;

void foo() {
 Dummy *ptr = (Dummy *) malloc(sizeof(struct Dummy));
 ptr->a = 2048;
 free(ptr);
}

ptr

.a

.b

Stack Heap

Precise memory layout

Lightweight reference

Destruction

.a = 2048

… ISSUE: ERRORS GO UNDETECTED
typedef struct { int a; int b; } Dummy;

void foo() {
 Dummy *ptr = (Dummy *) malloc(sizeof(struct Dummy));
 Dummy *alias = ptr;
 free(ptr);
 int a = alias.a;
 free(alias);
}

ptr

alias

.a

.b

Stack Heap

Dangling Pointer

Use after free

Double free

Aliasing Mutation

CORNELL CS4414 - FALL 2024 8

THESE ISSUES ARE ALL SOLVED BY MANAGED
LANGUAGES, BUT THEY ARE OFTEN SLOW
Java, Python, Ruby, C#, Scala, Go...

 All of them restrict direct access to memory with run-time management of
 memory via garbage collection. But…
 They pay a high overhead for tracking pointer use and array-index safety
 Performance can be unpredictable due to GC (bad for real-time systems)
 Limited concurrency (global interpreter lock typical)
 In some cases a VM is required (like for Python)
 Need more memory and CPU power (i.e. not bare-metal)

CORNELL CS4414 - FALL 2024 9

REQUIREMENTS FOR SYSTEM PROGRAMMING

The language must be fast and have minimal runtime overhead

Developer should be able to visualize every action the entire
system is performing and gain control over everything.

We often need direct memory access, but wish it was memory-safe

CORNELL CS4414 - FALL 2024 10

RUST
CORNELL CS4414 - FALL 2024 11

Rust is named after a fungus that is
robust, distributed, and parallel.

It is also a subsequence of "robust".

http://en.wikipedia.org/wiki/Rust_%28fungus%29

RUST

From the official website (http://rust-lang.org):

Rust is a true system programming language.
 No runtime requirement (runs fast)
 Control over memory allocation/destruction.
 Guarantees memory safety

Created by Monzilla to address severe memory leakage and corruption bugs
in Firefox. First stable release in 5/2015

CORNELL CS4414 - FALL 2024 12

http://rust-lang.org/

RUST OVERVIEW

Performance, as with C or C++, similar look and feel as C++
 Rust compiles to object code for bare-metal performance

Supports memory safety
 Programs cannot dereference pointers that have been freed
 Out-of-bound array accesses not allowed

Relatively low overhead
 Compiler checks to make sure rules for memory safety are followed
 Zero-cost abstraction in managing memory (i.e. no garbage collection)

CORNELL CS4414 - FALL 2024 13

RUST OVERVIEW

How is this done? Like C++, much occurs at compile time!
 Advanced type system
 Novel language features to prevent memory and pointer issues

But there is a cost
 Cognitive cost to programmers who must think more about rules for
 using memory and references as they program
 Less control of the kind needed for ML and HPC programming

CORNELL CS4414 - FALL 2024 14

MORE ON THIS LAST POINT (1)?

Recall fast word-count. Sagar first turned every file into std::strings,
but then discarded most of the strings. A wasteful design.

Ken had a layer that operated directly on data in character buffers.
This uses pointers to ascii chars in arrays.

In Rust, pointer logic like what Ken did is much harder to implement
because the compiler perceives it as unsafe. Inserting safety checks
for every pointer dereference is similarly wasteful.

CORNELL CS4414 - FALL 2024 15

MORE ON THIS LAST POINT (2)?

Think about our lectures on SIMD, where we needed to control
layout of data structures in memory to ensure that the alignment
rules for data would be “visible” to the C++ compiler, and used
templates + inlining + constexpr to preserve code elegance.

In Rust it can be hard or impossible to get the same kinds of
guarantees. Rust lacks C++’s template “language”.

CORNELL CS4414 - FALL 2024 16

RUST IS ALSO AT ODDS WITH DIRECT-
MAPPED GPU MEMORY, DMA AND RDMA
Device-mapped memory and mapped files can be exposed, but
Rust protects accessing that memory with costly overheads.

All forms of direct memory transfers from network, disk or GPU
are inherently unsafe, as are shared segments and VM page
remapping: features advanced C++ developers often use.

CORNELL CS4414 - FALL 2024 17

RUST’S TYPE SYSTEM
CORNELL CS4414 - FALL 2024 18

RUST TYPES LOOK MUCH LIKE C/C++ TYPES

Primitive types
 bool
 char (4-byte unicode)
 i8/i16/i32/i64/isize
 u8/u16/u32/u64/usize
 F32/f64

CORNELL CS4414 - FALL 2024 19

Numeric types specified with width. The Unicode char
default might surprise some C or C++ developers.

C TYPES HAVE SOME IDIOSYNCRASIES.

C “overloads” integers to get Booleans. Can create ambiguity:
an integer isn’t limited to just 0 or 1.
 True, False, or Fail? 1, 0, -1? Misinterpretations lead to security issues
 Example: In the PHP is a widely used C library for web programming. In it,
 strcmp returns 0 for both equality *and* failure!

C++ offers a true Boolean type. If you use it, this can’t occur

CORNELL CS4414 - FALL 2024 20

In Rust, arrays stored with their length [T; N]
Allows for both compile-time and run-time checks on
array access via[]

C, C++ ARRAY TYPE

void main() {
 int nums[8] = {1,2,3,4,5,6,7,8};
 for (x = 0; x < 10; i++)
 printf(“%d\n”,nums[i]);
}

C Rust

CORNELL CS4414 - FALL 2024 21

But…
Checking bounds on every access adds overhead

Arrays typically accessed via more efficient iterators to allow compile
time checking, avoid runtime overheads
Can use x86 loop instruction

RUST AND BOUNDS CHECKING

CORNELL CS4414 - FALL 2024 22

RUST IS VERY CAUTIOUS ABOUT COERSIONS

In C code, you can cast any integer to an unsigned integer of the same
size, or back. C++ doesn’t allow this… except when compiling C

-1 casts to 2147483648 (largest uint32). Is this what a developer
intended? The C specification just says this is an “undefined” cast!

A European rocket once veered wildly off course, then exploded
because one module used unsigned int, but another used signed int.

CORNELL CS4414 - FALL 2024 23

RUST VS C TYPING ERRORS
C has confusing implicit integer casts and promotion
-1 > 0U
2147483647U < -2147483648

Rust’s type system prevents such comparisons

void main() {
 unsigned int a = 4294967295;
 int b = -1;
 if (a == b)
 printf("%u == %d\n",a,b);
}

mashimaro <~> 9:44AM % ./a.out
4294967295 == -1

CORNELL CS4414 - FALL 2024 24

RUST VS C TYPING ERRORS
Same or different?

void main() {
 char a=251;
 unsigned char b = 251;
 printf("a = %x\n", a);
 printf("b = %x\n", b);

 if (a == b)
 printf("Same\n");
 else
 printf("Not Same\n");
}

mashimaro<> % ./a.out
a = fffffffb
b = fb
Not Same

CORNELL CS4414 - FALL 2024 25

RUST VS C TYPING ERRORS
201 > 200?

#include <stdio.h>
void main() {
 unsigned int ui = 201;
 char c=200;
 if (ui > c)
 printf("ui(%d) > c(%d)\n",ui,c);
 else
 printf("ui(%d) < c(%d)\n",ui,c);
}

mashimaro <~> 12:50PM % ./a.out
ui(201) < c(-56)

CORNELL CS4414 - FALL 2024 26

RUST VS C TYPING ERRORS

In Rust, casting is allowed via the “as” keyword
 Follows similar rules as C
 But, warns problem before performing the promotion with sign extension.
 C++ does this too, but because C code can be pulled in so easily…

#include <stdio.h>
void main() {
 char c=128;
 unsigned int uc;
 uc = (unsigned int) c;
 printf("%x %u\n",uc, uc);
}

mashimaro <~> 1:24PM % ./a.out
ffffff80 4294967168

CORNELL CS4414 - FALL 2024 27

RUST VS C TYPING ERRORS
C has issues with unchecked underflow and overflow
Silent wraparound in C caught by runtime check in Rust

void main() {
 unsigned int a = 4;
 a = a - 3;
 printf("%u\n",a-2);
}
mashimaro <~> 9:35AM % ./a.out
4294967295

CORNELL CS4414 - FALL 2024 28

EXAMPLE: A FAMOUS C VULNERABILITY

DNS parser vulnerability discussed in B&O, Chapter 2
count read as byte, then count bytes concatenated to nameStr

http://www.informit.com/articles/article.aspx?p=686170&seqNum=

char *indx;
 int count;
 char nameStr[MAX_LEN]; //256
...
 memset(nameStr, '\0', sizeof(nameStr));
...
 indx = (char *)(pkt + rr_offset);
 count = (char)*indx;
 while (count){
 (char *)indx++;
 strncat(nameStr, (char *)indx, count);
 indx += count;
 count = (char)*indx;
 strncat(nameStr, ".“, sizeof(nameStr) – strlen(nameStr));
 }
 nameStr[strlen(nameStr)-1] = '\0';

What if count = 128?

Type mismatch in Rust

Sign extended then used in strncat

char *strncat(char *dest, const char *src, size_t n);
CORNELL CS4414 - FALL 2024 29

ANOTHER C VULNERABILITY
2002 FreeBSD getpeername() bug (B&O Ch. 2)
Kernel code to copy hostname into user buffer
copy_from_kernel() call takes signed int for size from user
memcpy call uses unsigned size_t

What if adversary gives a length of “-1” for his buffer size?

#define KSIZE 1024
char kbuf[KSIZE]
void *memcpy(void *dest, void *src, size_t n);

int copy_from_kernel(void *user_dest, int maxlen){
 /* Attempt to set len=min(KSIZE, maxlen) */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

(KSIZE < -1) is false, so len = -1
memcpy casts -1 to 232-1
Unauthorized kernel memory copied out

Type mismatch in Rust

CORNELL CS4414 - FALL 2024 30

RUST’S OWNERSHIP & BORROWING

Compiler enforced:

Every resource has a unique owner.

Others can borrow the resource from its owner (e.g. create an
alias) with restrictions

Owner cannot free or mutate its resource while it is borrowed.

Aliasing Mutation

No need for runtime Memory safety Data-race freedom

CORNELL CS4414 - FALL 2024 31

struct Dummy { a: i32, b: i32 }

fn foo() {
 let mut res = Box::new(Dummy {
 a: 0,
 b: 0
 });
 res.a = 2048;
}

OWNERSHIP AND LIFETIMES
There can be only one “owner” of an object at a time.
When the “owner” of the object goes out of scope, its data is automatically freed
Can not access object beyond its lifetime (checked at compile-time)

res

.a = 0

.b = 0

Stack
Heap

.a = 2048

Memory allocation

Resource owned by res is freed automatically
owns

CORNELL CS4414 - FALL 2024 32

ASSIGNMENT CHANGES OWNERSHIP

http://is.gd/pZKiBw

CORNELL CS4414 - FALL 2024 33

http://is.gd/pZKiBw

OWNERSHIP TRANSFERS IN FUNCTION CALLS
struct Dummy { a: i32, b: i32 }

fn foo() {
 let mut res = Box::new(Dummy {
 a: 0,
 b: 0
 });
 take(res);
 println!(“res.a = {}”, res.a);
}

fn take(arg: Box<Dummy>) {
}

Ownership is moved from res to arg

arg is out of scope and the resource is freed automatically

Compiler Error. If you plan to
use res again, must employ “borrow”
semantics, not “move” semantics!

CORNELL CS4414 - FALL 2024 34

By default, Rust variables are immutable (read only)
 Usage checked at compile time

mut is used to declare a resource as mutable.

MUTABILITY: A STATIC FORM OF LOCKING

fn main() {
 let mut a: i32 = 0;
 a = a + 1;
 println!("{}" , a);
}

rustc 1.14.0 (e8a012324 2016-12-16)
error[E0384]: re-assignment of immutable variable `a`
 --> <anon>:3:5
 |
2 | let a: i32 = 0;
 | - first assignment to `a`
3 | a = a + 1;
 | ^^^^^^^^^ re-assignment of immutable variable

error: aborting due to previous error

rustc 1.14.0 (e8a012324 2016-12-16)
1
Program ended.

http://is.gd/OQDszP

CORNELL CS4414 - FALL 2024 35

http://is.gd/OQDszP

BORROWING

You cannot borrow mutable reference from immutable object
 Or mutate an object immutably borrowed

You cannot borrow more than one mutable reference (to support atomicity)
 You can borrow an immutable reference many times

There cannot exist a mutable reference and an immutable one
simultaneously (removes race conditions)
The lifetime of a borrowed reference should end before the lifetime of the
owner object does (removes use after free)

CORNELL CS4414 - FALL 2024 36

BORROWING EXAMPLE (&)

You cannot borrow mutable reference from
immutable object

struct Dummy { a: i32, b: i32 }

fn foo() {
 let res = Box::new(Dummy{a: 0, b: 0});

 res.a = 2048;

 let borrower = &mut res;
}

Error: Resource is immutable

Error: Cannot get a mutable borrowing
 of an immutable resource

CORNELL CS4414 - FALL 2024 37

BORROWING EXAMPLE (&)

struct Dummy { a: i32, b: i32 }

fn foo() {
 let mut res = Box::new(Dummy{
 a: 0,
 b: 0
 });
 take(&res);
 res.a = 2048;
}

fn take(arg: &Box<Dummy>) {
 arg.a = 2048;
}

Resource is immutably borrowed by arg from res

Resource is still owned by res. No free here.

Resource is returned from arg to res

Compiler Error: Cannot mutate via
an immutable reference

You cannot mutate an object immutably borrowed

CORNELL CS4414 - FALL 2024 38

BORROWING EXAMPLE (&MUT)

Aliasing Mutationstruct Dummy { a: i32, b: i32 }

fn foo() {
 let mut res = Box::new(Dummy{a: 0, b: 0});

 take(&mut res);
 res.a = 4096;

 let borrower = &mut res;

}

fn take(arg: &mut Box<Dummy>) {
 arg.a = 2048;
}

Mutably borrowed by arg from res but returned when
take completes.

Returned from arg to res

Multiple mutable borrowings
are disallowedlet alias = &mut res;

You cannot borrow more than one mutable reference

CORNELL CS4414 - FALL 2024 39

You can borrow more than one immutable reference
• But, there cannot exist a mutable reference and an immutable one simultaneously

IMMUTABLE, SHARED BORROWING (&)

struct Dummy { a: i32, b: i32 }

fn foo() {
 let mut res = Box::new(Dummy{a: 0, b: 0});
 {
 let alias1 = &res;
 let alias2 = &res;
 let alias3 = alias2;
 res.a = 2048;
 }
 res.a = 2048;
}

Aliasing Mutation

CORNELL CS4414 - FALL 2024 40

USE-AFTER FREE IN C OR C++

Memory allocated to int

Then freed

Then used after free

If these calls are far away from each other,
this bug can be very hard to find.

CORNELL CS4414 - FALL 2024 41

RUST PREVENTS THIS!

The lifetime of a borrowed reference should end before the
lifetime of the owner object does

CORNELL CS4414 - FALL 2024 42

USE AFTER FREE CAUGHT BY RUST AT
COMPILE-TIME

Unique ownership, borrowing, and
lifetime rules easily enforced

CORNELL CS4414 - FALL 2024 43

DANGLING POINTER IN C

Famous scoping issues example (B&O Ch 3, Procedures)
int* func(int x) {
 int n;
 int *np;
 n = x;
 np = &n;
 return np;
}

What does np point to after function returns?

What happens if np is dereferenced after being returned?

http://thefengs.com/wuchang/courses/cs201/class/08/invalid_ref.c

Local variable is allocated in stack,
a temporal storage of function.

Reference returned, but variable now out
of scope (dangling pointer)

CORNELL CS4414 - FALL 2024 44

CAUGHT BY RUST AT COMPILE-TIME

borrowed pointer
cannot outlive
the owner!!

Ownership/Borrowing rules ensure objects are not accessed beyond lifetime

http://is.gd/3MTsSC

CORNELL CS4414 - FALL 2024 45

http://is.gd/3MTsSC

SEEMS LIKE RUST WINS EVERY TIME!
BUT IT ISN’T SO SIMPLE!

C/C++

more control,
less safety

Haskell/Python

less control,
more safety

more control,
more safety

Rust

CORNELL CS4414 - FALL 2024 46

RUST OWNERSHIP AND BORROWING CAN BE
ANNOYING!

v is an owner of the vector

By taking a reference to v[0], x borrows the vector from v

now v cannot modify the vector
because it lent the ownership to x

http://is.gd/dEamuS

CORNELL CS4414 - FALL 2024 47

http://is.gd/dEamuS

CONCURRENCY & DATA-RACE FREEDOM

struct Dummy { a: i32, b: i32 }

fn foo() {
 let mut res = Box::new(Dummy {a: 0, b: 0});

 std::thread::spawn(move || {
 let borrower = &mut res;
 borrower.a += 1;
 });

 res.a += 1;
}

Error: res is being mutably borrowed

res is mutably borrowed

Spawn a new thread

CORNELL CS4414 - FALL 2024 48

MUTABLY SHARING

Mutably sharing is inevitable in the real world.
Example: mutable doubly linked list

We require two mutable pointers to the middle
mode. This is the essential feature of a list!

prev

next

prev

next

prev

next

struct Node {
 prev: option<Box<Node>>,
 next: option<Box<Node>>
}

CORNELL CS4414 - FALL 2024 49

RUST SOLUTION: RAW POINTERS

Rust allies C-style pointers too…. But now the compiler does NOT
check the memory safety of most operations involving that pointer.
If possible, operations wrt. raw pointers should be encapsulated in
a unsafe {} syntactic structure.

prev

next

prev

next

prev

next

struct Node {
 prev: option<Box<Node>>,
 next: *mut Node
}

Raw pointer

CORNELL CS4414 - FALL 2024 50

RUST RAW POINTERS BREAK RUST’S NORMAL
MUTABILITY RESTRICTIONS

let a = 3;

unsafe {
 let b = &a as *const u32 as *mut u32;
 *b = 4;
}

println!(“a = {}”, a);

I know what I’m doing

Print “a = 4”

CORNELL CS4414 - FALL 2024 51

TALKING TO LIBRARIES: THE FOREIGN
FUNCTION INTERFACE (FFI)
You can call code in libraries written in other languages, but the
foreign functions are unsafe (e.g. libc calls)

extern {
 fn write(fd: i32, data: *const u8, len: u32) -> i32;
}

fn main() {
 let msg = b”Hello, world!\n”;
 unsafe {
 write(1, &msg[0], msg.len());
 }
}

CORNELL CS4414 - FALL 2024 52

BIG DEAL?

It is, because libraries are really important.

In ML we rely on tools like LINPACK, MPI, etc. And most GEMM
kernels for ML tasks mix C or C++ with GPU or host parallelism.

Even if recoded in Rust they would still be unsafe!

CORNELL CS4414 - FALL 2024 53

SO THIS TELLS US THAT RUST…

… often yields programs that actually are still unsafe!

Rust isn’t some sort of magic wand. It is more like a tool that we
can use to protect ourselves against certain kinds of errors

Monzilla found it super effective! But some hard-core C++
developers who play with Rust find it annoying. And people
focused on host parallelism may find the compiled code slow.

CORNELL CS4414 - FALL 2024 54

WHAT ABOUT SPEED? IS RUST FAST LIKE
C++, OR SLOW LIKE PYTHON?

Used correctly, Rust code performs well – potentially, better than
Java and certainly better than Python. Sometimes as well as
C++

Rust can do most of what we do in C++, and often at the same
speed.

But it lacks templates + constexpr + inlining: C++ magic speedup

CORNELL CS4414 - FALL 2024 55

RUST (CURRENTLY) IS WEAK ON COMPILE
TIME OPTIMIZATIONS
With skilled use of templates and constexpr, a C++ program
can be extensively precomputed, leaving only things that must
occur at runtime.

Rust has generics but nothing analogous to the C++ template
language, so SIMD coding isn’t feasible. There are situations
where Rust might be dramatically slower than C++ (despite
using the same LLVM back end as Clang).

CORNELL CS4414 - FALL 2024 56

AN UNWINABLE DEBATE!

People who love Rust aren’t going to switch back to C++

People who love C++ agree that Rust addresses many security
issues (but at a cost). And they find ownership and mutability
annoying, yet inadequate for even trivial data structures.

… the market adoption of Rust is good, but not overwhelming

CORNELL CS4414 - FALL 2024 57

BOTTOM LINE?

Rust genuinely is a powerful tool, but not trivial to use correctly,
and limiting in important ways.

To get similar security in C++ requires systematic attention to
risks, careful coding style, verification of logic, testing.

But because systems programming involves external libraries,
GPUs and DMA, we sometimes have no other choice .

CORNELL CS4414 - FALL 2024 58

FURTHER READING

Haozhong Zhang “An Introduction to The Rust Programming Language”
Aaron Turon, The Rust Programming Language, Colloquium on Computer
Systems Seminar Series (EE380) , Stanford University, 2015.
Alex Crichton, Intro to the Rust programming language,
http://people.mozilla.org/~acrichton/rust-talk-2014-12-10/
The Rust Programming Language, https://doc.rust-lang.org/stable/book/
Tim Chevalier, “Rust: A Friendly Introduction”, 6/19/2013

CORNELL CS4414 - FALL 2024 59

http://people.mozilla.org/%7Eacrichton/rust-talk-2014-12-10/
https://doc.rust-lang.org/stable/book/

RESOURCES

Rust website: http://rust-lang.org/
Rust by example: http://rustbyexample.com/
Guide: https://doc.rust-lang.org/stable/book/
User forum: https://users.rust-lang.org/
Book: https://doc.rust-lang.org/stable/book/academic-research.html

Speed of Rust versus C++*:
https://www.bairesdev.com/blog/when-speed-matters-
comparing-rust-and-c/

CORNELL CS4414 - FALL 2024 60* Note: This guy never took CS4414! He means “if you code without giving it much thought”

http://rust-lang.org/
http://rustbyexample.com/
https://doc.rust-lang.org/stable/book/
https://users.rust-lang.org/
https://doc.rust-lang.org/stable/book/academic-research.html
https://www.bairesdev.com/blog/when-speed-matters-comparing-rust-and-c/
https://www.bairesdev.com/blog/when-speed-matters-comparing-rust-and-c/

	Rust: A Cousin of C++ with better memory protection
	Idea Map For Today
	C++ is deeply connected to C
	C (the good parts)
	But…
	and… in both C and C++…
	Example: C-style pointers in C or C++
	… issue: errors go undetected
	These issues are all Solved by managed languages, but they are often slow
	Requirements for system programMing
	Rust
	Rust
	Rust overview
	Rust overview
	More on this last point (1)?
	More on this last point (2)?
	Rust is also at odds with direct-mapped GPU memory, DMA and RDMA
	Rust’s type system
	Rust types look much like C/C++ types
	C types have some idiosyncrasies.
	C, C++ array type
	Rust and bounds checking
	Rust is very cautious about coersions
	Rust vs C typing errors
	Rust vs C typing errors
	Rust vs C typing errors
	Rust vs C typing errors
	Rust vs C typing errors
	Example: A famous C vulnerability
	Another C vulnerability
	Rust’s Ownership & Borrowing
	Ownership and lifetimes
	Assignment changes ownership
	Ownership transfers in function calls
	Mutability: a static form of locking
	Borrowing
	Borrowing example (&)
	Borrowing example (&)
	Borrowing example (&mut)
	Immutable, shared borrowing (&)
	Use-after free in C or C++
	Rust prevents this!
	Use after free Caught by Rust at compile-time
	Dangling pointer in C
	Caught by Rust at compile-time
	Seems like Rust wins every time!�But it isn’t so simple!
	Rust ownership and borrowing can be annoying!
	Concurrency & Data-race Freedom
	Mutably Sharing
	Rust Solution: Raw Pointers
	Rust Raw Pointers break rust’s normal mutability restrictions
	Talking to libraries: the foreign Function Interface (FFI)
	Big deal?
	So this tells us that Rust…	
	What about speed? Is RUST fast like C++, or Slow like Python?
	rust (currently) is weak on compile time optimizations
	An unwinable debate!
	Bottom line?
	Further reading
	Resources

