
TRANSACTIONS Professor Ken Birman
CS4414 Lecture 24

CORNELL CS4414 - SPRING 2023 1

IDEA MAP FOR TODAY

CORNELL CS4414 - SPRING 2023 2

Transaction model: a
way to describe
correct, consistent
behavior when

distributed programs
concurrently access

storage that could be
spread over many

machines.

Two-Phase commit: a central
building block for a solution.
Ensures that if any process
commits, all do; otherwise it

aborts.

How would we prove that a solution
such as this really works?

Could it deadlock? What would we
do if that happened?

What is something crashes but we
want the system to be self-repairing?

Two-phase locking (similar name,
totally different meaning!): A way
to do read and write locking that,
when combined with two-phase
commit, ensures transactional

serializability

TRANSACTION MODEL

A “model” is a descriptive formalism – a mathematical way to
describe real-world things.

The transactional model starts by defining data object and
processes. The idea is to have a very simple mathematical
description that removes all the implementation details and
leaves only the bare bones, but yet is still useful.

CORNELL CS4414 - SPRING 2023 3

ROLE OF BEGIN AND COMMIT/ABORT?

Begin is a kind of a “curly brace”. But in fact it denotes the
place where the transactional system initializes itself.

Commit is the way a successful transaction tells the runtime
environment to save (make permanent) all its changes.

Abort tells the system to back the changes out.

CORNELL CS4414 - SPRING 2023 4

ABORT IS USEFUL!

Suppose you were uncertain how to approach someone you
really, really wanted to meet.

You could try different options. If they didn’t work out, you just
invoke “abort” and the world rewinds to how it was at the start.

Kind of like the movie “Palm Springs”

CORNELL CS4414 - SPRING 2023 5

DATA AND PROCESSES

We model data as a set of variables, usually with alphabetical
names such as X, Y, Z…

A transaction models an executing program that has
begin/commit/abort blocks, inside of which it issues reads and
writes to the variables.

CORNELL CS4414 - SPRING 2023 6

SYNCHRONIZATION

We expect to have lots of concurrent processes running, so we
need a way to avoid concurrency issues.

For this a transactional model introduces read locks and write
locks. If you hold a read lock on X, you can only do reads.
With a write lock, you can do both reads and writes.

CORNELL CS4414 - SPRING 2023 7

EXAMPLE

Transaction 1:
 Begin;
 ReadLock X;
 ReadLock Y;
 WriteLock Z;
 Z = X+Y;
 Commit;

Transaction 2:
 Begin;
 ReadLock Z;
 WriteLock X;
 WriteLock Y;
 X = Y-Z;
 Y = X+Z;
 Commit;

CORNELL CS4414 - SPRING 2023 8

WHY DOES OUR MODEL LOOK LIKE CODE?

The real program would be written in a language like C++

But the idea is to strip away everything except locking and data
access operations.

So we still see a code-like structure, but now we think of it as a
mathematical tool for describing our program.

CORNELL CS4414 - SPRING 2023 9

THINGS WE “STRIP AWAY”

We don’t show your C++ and its variables. We hide the logic of the
program than executed the transactional reads and writes.

We don’t show the full data structure. X could be an object and we
might be changing just one field, but we show it as a read or write.

We don’t show the various schedulers that might reorder things.

CORNELL CS4414 - SPRING 2023 10

CONCEPT: A STORAGE “EXECUTION TRACE”

This is a time-line (left to right) showing the sequence of events
as observed by the storage layer of the transactional system

Each read or write will be visible, but we don’t show the locking
requests (those are handled in a different layer, so they aren’t
part of the storage trace – they are part of a concurrency
control execution trace)

CORNELL CS4414 - SPRING 2023 11

BASIC PHILOSOPHY

Our concurrent system should behave just like it ran one
transaction at a time, to completion, then started the other.

But the order in which they run isn’t predictable. Any permuted
order is considered to be a correct run of the system.

This property is called serializability.

CORNELL CS4414 - SPRING 2023 12

EXECUTION TRACE: T1 RUNS FIRST, THEN T2

Transaction 1:
 Begin;
 ReadLock X;
 ReadLock Y;
 WriteLock Z;
 Z = X+Y;
 Commit;

Transaction 2:
 Begin;
 ReadLock Z;
 WriteLock X;
 WriteLock Y;
 X = Y-Z;
 Y = X+Z;
 Commit;

CORNELL CS4414 - SPRING 2023 13

R1 X R1 Y W1 Z R2 Z W2 X W2 YR2 X R2 Y

In this trace, time goes from left to right

SECOND EXAMPLE: T2 RUNS FIRST, THEN T1

Transaction 1:
 Begin;
 ReadLock X;
 ReadLock Y;
 WriteLock Z;
 Z = X+Y;
 Commit;

Transaction 2:
 Begin;
 ReadLock Z;
 WriteLock X;
 WriteLock Y;
 X = Y-Z;
 Y = X+Z;
 Commit;

CORNELL CS4414 - SPRING 2023 14

R2 Z W2 X W2 YR2 X R2 Y

In this trace, time goes from left to right

R1 X R1 Y W1 Z

THIRD TRACE: INTERLEAVED. IS THIS A
SERIALIZABLE EVENT ORDERING?
Transaction 1:
 Begin;
 ReadLock X;
 ReadLock Y;
 WriteLock Z;
 Z = X+Y;
 Commit;

Transaction 2:
 Begin;
 ReadLock Z;
 WriteLock X;
 WriteLock Y;
 X = Y-Z;
 Y = X+Z;
 Commit;

CORNELL CS4414 - SPRING 2023 15

R1 X R1 Y W1 ZR2 Z W2 X W2 YR2 X R2 Y

WAS THE THIRD TRACE SERIALIZABLE?

Suppose initially X=1, Y=2, Z=9

First trace:

 T1 leaves X=1, Y=2, Z=3

 … then T2 leaves X=-1, Y=2, Z=3

CORNELL CS4414 - SPRING 2023 16

T1: Z = X+Y; T2:
X = Y-Z;
Y = X+Z;

DO THESE TRACES GIVE CORRECT RESULTS?

Suppose initially X=1, Y=2, Z=9

First trace:

 T1 leaves X=1, Y=2, Z=3

 … then T2 leaves X=-1, Y=2, Z=3

Now consider trace 2 for X=1, Y=2, Z=9

Here, T2 ran first, then T1

 T2 leaves X=-7, Y=2, Z=9

 … then T1 leaves X=-7, Y=2, Z=-5

CORNELL CS4414 - SPRING 2023 17

Bold: these outcomes reflect the two possible orderings

T1: Z = X+Y; T2:
X = Y-Z;
Y = X+Z;

HAND-COMPUTING THE INTERLEAVED OUTCOME

Transaction 1:
 Begin;
 ReadLock X;
 ReadLock Y;
 WriteLock Z;
 Z = X+Y;
 Commit;

Transaction 2:
 Begin;
 ReadLock Z;
 WriteLock X;
 WriteLock Y;
 X = Y-Z;
 Y = X+Z;
 Commit;

CORNELL CS4414 - SPRING 2023 18

R1 X = 1 R1 Y = 2
W1 Z = 3

R2 Z = 9
W2 X = -7

W2 Y = 2R2 X = 1 R2 Y = 2
Start X = 1
 Y = 2
 Z = 9

End X = -7
 Y = 2
 Z = 3

DO THESE TRACES GIVE CORRECT RESULTS?

We started with X=1, Y=2, Z=9

The T1T2 serialization order results in:

 X=-1, Y=2, Z=3

The T2T1 serialization order results in:

 X=-7, Y=2, Z=-5

… But the interleaved execution results in:

 X=-7, Y=2, Z=3

CORNELL CS4414 - SPRING 2023 19

This can’t happen with the ordering T1 T2 or T2 T1

A FAMILIAR SITUATION! JUST LIKE CRITICAL
SECTIONS WITH INTERFERENCE!
… It turns out that serialized orderings make sense, but non-
serialized execution orderings are sometimes nonsense.

We need to allow concurrency (for speedup) but prevent
disordered/scrambled outcomes.

Idea: we need a way to enforce serializability

CORNELL CS4414 - SPRING 2023 20

WHY USE ABORT (IN CODE, NOT REAL LIFE)?

Abort undoes the effects – just as if the transaction never
started.

Non-serializable execution? Just make sure that when the
transactions complete, they are forced to abort. Unhappy with
the new bank balance if this transaction runs? Abort it.

We also use abort to “clean up” if a crash disrupts a run
CORNELL CS4414 - SPRING 2023 21

ACID MODEL, SERIALIZABILITY

Jim Gray and others proposed a simple set of rules to describe how
transactions should behave: ACID
 Atomic: All or nothing.
 Consistent: A correct transaction takes the data from one
 consistent state to another consistent state.
 Isolation: If two transactions run at the same time, they shouldn’t
 see one-another’s pending (uncommitted) updates.
 Durability: Once committed, updates won’t get lost.

CORNELL CS4414 - SPRING 2023 22

A BIT LIKE CRITICAL SECTIONS!

With critical sections we enforce that only one thing can run the
protected block(s) of code at a time.

Transactions are using this concept but taking it a little further. P
and Q can “simultaneously” access X and Y and Z. All we care
about is the state at the end of the run when all the commit and
abort operations are finished.

CORNELL CS4414 - SPRING 2023 23

TWO-PHASE COMMIT

A “distributed protocol” aimed at solving a practical issue seen
with transactions when data is spread over multiple servers.

Suppose that X and Y and Z are each held by different servers.
When a transaction runs, it creates pending updates, X’, Y’, Z’.
Commit makes these permanent… Abort would roll them back.

But how do we ensure “all or nothing” commit (or abort)?
CORNELL CS4414 - SPRING 2023 24

FAILURES (CRASHES) MAKE IT HARD

Suppose server Y crashes and then restarts. The crash mangled
transient update (Y’). Y can still abort but can no longer commit!

So, suppose T is trying to commit.

CORNELL CS4414 - SPRING 2023 25

TWO-PHASE COMMIT

1. T says to X, Y and Z: are you able to commit?
2. X and Y and Z must first log X’ and Y’ and Z’ on disk. This is to

ensure that even with a crash, they are still prepared to commit.
3. Then each replies: “I’m prepared to commit!”
4. T can commit if all three are prepared… but should abort if any doesn’t

respond or replies that it “must abort”.
5. T also logs its decision, so if Y is down when T commits, later Y can find

out what it should do. We call this a write-ahead log.

6. Step 5 assumes the log is highly available, but there are ways to ensure this.

CORNELL CS4414 - SPRING 2023 26

PROBLEM SOLVED!

With two-phase commit, either all of the servers (eventually)
commit and install the update, or all of them abort.

A crashed server will reboot with the update still pending, but
won’t have lost it. So by checking the outcomes log, it learns that
the transaction committed, and then it finalizes the outcome
before resuming participation in the system. “Automatic repair”!

CORNELL CS4414 - SPRING 2023 27

WHAT ABOUT LOCKING?

T1 has a read lock on X, and wants a write lock on Z.
But T2 has a write lock on Z, and is waiting for a read lock on X.

Deadlock! The red lock operations never complete… the yellow
data reads and writes never actually occur!

CORNELL CS4414 - SPRING 2023 28

R1 X R1 YR2 Z R2 X W1 ZW2 X W2 Y

WHAT ABOUT LOCKING? HERE WE FOCUS ON
THE CONCURRENCY CONTROL TRACE

T1 has a read lock on X, and wants a write lock on Z.
But T2 has a write lock on Z, and is waiting for a read lock on X.

Deadlock! The red lock operations never complete… the yellow
data reads and writes never actually occur!

CORNELL CS4414 - SPRING 2023 29

R1 X R1 YR2 Z R2 X

T1 read-lock X T1 read-lock Y
T2 read-lock Z

T2 write-lock X

T1 write-lock Z

W1 ZW2 X W2 Y

These never get issued because
T1 and T2 both are waiting!

WHAT ABOUT LOCKING?

T1 has a read lock on X, and wants a write lock on Z.
But T2 has a write lock on Z, and is waiting for a read lock on X.

Deadlock! The red lock operations never complete… the yellow
data reads and writes never actually occur!

CORNELL CS4414 - SPRING 2023 30

R1 X R1 YR2 Z

T1 read-lock X T1 read-lock Y
T2 read-lock Z

T2 write-lock X

T1 write-lock Z

NOTICE THE WAIT-FOR CYCLE

T1 waits for T2. T2 waits for T1.

Any deadlock involves a cycle of this kind. A solution that
cannot form lock cycles will be free of deadlocks.

For example: pre-agree on a locking order, like “you must get
your locks in alphabetical order”.

CORNELL CS4414 - SPRING 2023 31

… AN IDEA WE ALREADY SAW, WITH THREADS!

In our sample transactions, the code for T1 has no problems: it
locks X, then Y, then Z.

The code was written as if T2 would first lock Z, then X, then Y.
This breaks the new rule!

 T2 will need to be redesigned to ask for locks in X, Y, Z order

 Otherwise, at runtime, T2 will get a “lock order exception”

CORNELL CS4414 - SPRING 2023 32

PRACTICAL CONSEQUENCE?

T2 would need to know what locks it will need from the moment
it starts – it can’t just walk through our storage system and get
locks as it runs into objects.

Some transactions could definitely be written to anticipate future
locking needs, but often this would be infeasible.

So the rule isn’t always practical, but if it can be done, it works.
CORNELL CS4414 - SPRING 2023 33

MORE LIMITATIONS

It turns out that ordered locking is not quite enough.

We also need the rule that a process always asks for the strongest
form of locking it will ever need. So if T1 wants to read X now, it
can’t later try to upgrade its lock to a write lock. It needs a write
lock “from the start” if it might update X.

Our examples didn’t need this form of “lock upgrade” but random
fragments of code might not know, in advance, if they will read X
now and try to update X later. So again, this might be tricky.

CORNELL CS4414 - SPRING 2023 34

TWO-PHASE LOCKING WITH ORDERED LOCKS

This is a name for the rule that:
 Transactions get their locks in the proper order
 … and can never release a lock before the commit point,
 so they can’t acquire, release, re-acquire
 There is a phase when locks are accumulated, then commit
 (or abort), then locks are released.
 Don’t let the similarity of the name confuse you: this is used side
 by side with two-phase commit, but it involves locking, not commit.

CORNELL CS4414 - SPRING 2023 35

ADD IT ALL UP AND… IT WORKS!

Many modern computer systems use transactions.

Very easy to understand, simple coding style. For many
applications, the basic rules aren’t too hard to follow.

Gives a basic and robust way to handle failures

CORNELL CS4414 - SPRING 2023 36

GOOD THINGS ABOUT TRANSACTIONS

They are an easy model to understand.

Many packages implement the model.

Database systems like MySQL, Oracle, etc. have transactions
“built in.” You talk to the database via a query/update API,
and they handle everything.

CORNELL CS4414 - SPRING 2023 37

TRANSACTIONS ON M E M OR Y OB J E C T S

One big area of research involved “transactional memory”

The idea was that a language like C++ could support
transactional objects, where the methods would execute as
atomic actions.

All needed mechanisms (locking, versions, commit, abort) built in

CORNELL CS4414 - SPRING 2023 38

“STM” VERSION OF TRANSACTIONAL MEMORY

A very famous idea used a hardware accelerator to try and
speed up the costly steps, like checking to see if a commit can
be done safely, maintaining versions and rolling back if needed

The other big effort used “software transactional memory”
models, where the logic was entirely inserted by the compiler
and the STL (or equivalent).

CORNELL CS4414 - SPRING 2023 39

HOW TO USE STM FEATURES IN C++?

Good news: it is easy to write concurrent C++ code this way. See
Transactional memory on cppreference.

This language extension adds a synchronized keyword to C++, as
well as atomic_commit, atomic_cancel and atomic_noexcept

The approach is lock-free but detects conflicting accesses and
automatically rolls back using atomic_cancel.

CORNELL CS4414 - SPRING 2023 40

https://en.cppreference.com/w/cpp/language/transactional_memory

… BUT PERFORMANCE CAN BE TERRIBLE

The issue: performance is great if threads never actually conflict, but
terrible if threads frequently contend to read and update the same data.

Why? With lots of contending threads, aborts and retries become
common. A connection to Jim Gray’s O(N3T5) slowdown is unavoidable.

The library could use hardware, if available, but in fact this form of
hardware has not been very successful in the computing market.

CORNELL CS4414 - SPRING 2023 41

BROADER ISSUES WITH TRANSACTIONS

They bring a lot of “mechanism” that can be really costly if you
didn’t actually need so much infrastructure.

A common concern is that if a query or update almost never
conflicts with other queries and updates, the overheads of
locking and two-phase commit can be larger than the “work”
you are actually doing.

CORNELL CS4414 - SPRING 2023 42

RATE OF DEADLOCK, ABORT, RETRY

Many transactional systems can’t be sure the user’s code is
deadlock free, so they check for deadlock, sense wait-for cycles
and automatically abort some of the waiting transactions.

Then those are automatically restarted.

But if you do this, you sometimes see “exponential” numbers of
retries, as a function of how many transactions are running.

CORNELL CS4414 - SPRING 2023 43

MORE CONCERNS THAT ARE RAISED

With a non-transactional key-value storage system we get
massive scalability mostly because every shard is running totally
independently. Then we add replication to make our shards
fault-tolerant.

But with transactions, the execution on one shard becomes linked
to things happening on other shards. We no longer have such an
easy path to scalability.

CORNELL CS4414 - SPRING 2023 44

ACTUAL EXPERIENCE?

In fact, teams that try to run full transactional infrastructures over
distributed key-value storage have run into scalability issues.

The key-value layer itself is just as scalable as ever.

But the transactional components get very sluggish and the
system quickly comes to a halt.

CORNELL CS4414 - SPRING 2023 45

SUBTRANSACTIONS

Another common complaint is that real systems are modular

Suppose that component A talks to component B (perhaps B is
an STL library, for example). What if both try to run
transactions?

CORNELL CS4414 - SPRING 2023 46

R1.1 X R1.1 Y W1.1 ZR1.2 Z W1.2 X W1.2 YR1.2 X R1.2 Y

HOW THIS CAN WORK

The idea was explored by Elliot Moss, a PhD student studying
with Barbara Lislov, Luiba Shrira at MIT.

When A executes begin, this starts a transaction, maybe T1.

Now, when B runs begin, we consider it to be a nested
subtransaction running inside the context created by A: T1.1

CORNELL CS4414 - SPRING 2023 47

Barbara Liskov

Luiba Shrira

Elliot Moss

Tn.m means step n of this process was a subtransaction, and
within it this is the m’th sub-subtransaction, etc

THE DETAILS

Each lock request is understood to occur in the “scope” defined
by the parent transaction. Locks are “inherited”

For example, if B requests a lock on X in transaction T1.1, but
then commits, T1 inherits the lock – it isn’t fully released.

T1.2 can acquire this lock, but some other transaction, T2, must
wait until T1 either commits or aborts.

CORNELL CS4414 - SPRING 2023 48

EXTENDING TWO-PHASE COMMIT

Moss, Liskov and Shrira also showed that you need to track
every server that any subtransaction ever talked to.

We “inherit” this list of servers up to the top level.

Then the top-level transaction, when it commits or aborts, must
include all of the servers on this commit list.

CORNELL CS4414 - SPRING 2023 49

12/5/2024 50

ACTION TREE (NOTATION: ACTION @ PLACE)

A.1.1@G3
committed

A.1.2@G4
committed

A.1@G1
aborted

A.2.1@G3
committed

A.2.2@G5
committed

A.2.3@G6
aborted

A.2@G2
committed

A@G
active

MORE DETAILS

Total ordering (for lock acquisition) turns out to be very hard.

When your code for A called B, you had no idea what B would
do. And B was coded as part of a library: it has no idea what A
was doing. How can we ensure a deadlock-free lock ordering?

Nobody ever really solved this puzzle!

CORNELL CS4414 - SPRING 2023 51

CRASHES CREATE WEIRD ISSUES TOO

Suppose that A used a remote procedure call to talk to B, like if
B was part of a key-value storage server but A was executing
on some other machine and talking to it over the network.

Now, if A crashes, B might be still doing work on behalf of A, or
holding locks and uncommitted data, etc.

CORNELL CS4414 - SPRING 2023 52

THIS LEADS TO “ORPHAN TERMINATION”

The idea is to identify orphan
transactions and terminate them

No need to check the commit log:
they always abort. If the transaction
leader died while running two-phase
commit, the child transactions would know

CORNELL CS4414 - SPRING 2023 53

The terminator. Killing orphans.

ULTIMATELY, NESTED TRANSACTIONS
BECAME STANDARD BUT “UNPOPULAR”
Today it is easy to find products that support nested transactions

So you can definitely use this model if you wish

But the costs are quite high, and people rarely use these
features in production code that cares about performance

CORNELL CS4414 - SPRING 2023 54

UNDER THE HOOD?

Inside the slow transactional systems you would see a lot of lock
waiting, and a lot of aborts.

When transactions abort they often need to be reissued (restarted
from scratch). So the data layer is working hard yet nothing useful is
happening.

This is like a form of livelock. It causes extremely high overheads.

CORNELL CS4414 - SPRING 2023 55

ANOTHER OVERHEAD ISSUE

Applications with threads can also create serious issues for
transactional systems.

Should each thread be viewed as a separate subtransaction, or
should they be considered to be distinct “top level” transactions?

It turns out both answers lead to costly, problematic logic

CORNELL CS4414 - SPRING 2023 56

CONSEQUENCE?

In some ways, the world has split.

Database users and big-data platforms often do use
transactions, but they are more and more “read mostly”, with
updates often occurring when the queries can temporarily pause

Many large distributed systems just don’t use transactions, at all

CORNELL CS4414 - SPRING 2023 57

IDEAS PEOPLE HAVE PROPOSED

The nice aspect is the simplicity of the model… So researchers
have tried to invent new ways to implement transactional key-
value stores that won’t have these scalability issues.

Some exciting recent work was done at Microsoft. They used a
form of hardware accelerator (RDMA). We will discuss this
solution, FaRM, in our next lecture. Microsoft Bing uses it.

CORNELL CS4414 - SPRING 2023 58

MSR FaRM Team: Aleksandar Dragojević,
Dushyanth Narayanan, Miguel Castro

SUMMARY: TRANSACTIONS

Powerful concept with a few simple building blocks: begin,
commit/abort, 2-phase locking, 2-phase commit.

At risk of O(N3T5) overhead growth, where N is the number of
servers hosting data and T is the number of transactions.

Databases avoid this problem using sharding and clever scheduling.
Transactional memory tried to make transactions into a PL keyword
but then ran into it, and the concept mostly failed as a result.

CORNELL CS4414 - SPRING 2023 59

	Transactions
	Idea map for today
	Transaction Model
	Role of begin and commit/Abort?
	Abort is useful!
	Data and Processes
	Synchronization
	Example
	Why does our model look like code?
	Things we “strip away”
	Concept: A storage “Execution Trace”
	Basic philosophy
	Execution trace: T1 runs first, then T2
	Second example: T2 runs first, then T1
	Third trace: Interleaved. Is this a serializable event ordering?
	Was the third trace serializable?
	do these traces give correct results?
	Hand-computing the interleaved outcome
	do these traces give correct results?
	A familiar situation! Just like critical sections with interference!
	Why use abort (in code, not real life)?
	ACID Model, Serializability
	A bit like critical sections!
	Two-Phase Commit
	Failures (crashes) make it hard
	Two-Phase COmmit
	Problem solved!
	What about locking?
	What about locking? Here we focus on the concurrency control trace
	What about locking?
	Notice the wait-for cycle
	… an idea we already saw, with threads!
	Practical consequence?
	More limitations
	Two-Phase locking with ordered locks
	Add it all up and… it works!
	Good things about transactions
	Transactions on memory objects
	“STM” version of transactional memory
	How to use STM features in C++?
	… but performance can be terrible
	Broader Issues with transactions
	Rate of deadlock, abort, retry
	More concerns that are raised
	Actual experience?
	Subtransactions
	How this can work
	The details
	Extending two-phase commit
	Action Tree (notation: action @ place)
	More details
	Crashes create weird issues too
	This leads to “orphan termination”
	Ultimately, nested transactions became standard but “unpopular”
	Under the hood?
	Another overhead issue
	Consequence?
	Ideas people have proposed
	Summary: Transactions

