
STORAGE AT “BIG DATA” SCALE Professor Ken Birman
CS4414 Lecture 23

CORNELL CS4414 - SPRING 2023 1

IDEA MAP FOR TODAY

CORNELL CS4414 - SPRING 2023 2

Modern applications often work with big data

By definition, big data means “you can’t fit it on your machine”

MemCacheD concept (a distributed
version of std::map)

Hot and cold spots Analogy to a distributed file
system (and differences)

BIG DATA… CAN BE HUGE!

A single computer can hold gigabytes of data in memory, and many
gigabytes on a local storage device.

But in modern AI/ML systems, like computer vision systems, we may
need to train a model on huge data sets (like multiple photos of each
student at Cornell).

It is easy to end up with data sets that won’t fit on one computer.

CORNELL CS4414 - SPRING 2023 3

SPECIAL ISSUES WITH REALLY BIG DATA

Where does it live, physically?

If big data is really big, it might not fit even with hundreds or
thousands of machines – the “full” data set may be on much
larger (but slower) archival storage systems.

So delay for access becomes a big concern!

CORNELL CS4414 - SPRING 2023 4

MEMORY/STORAGE TECHNOLOGY HIERARCHY

CORNELL CS4414 - SPRING 2023 5

(Average
selling price)

CORNELL CS4414 - SPRING 2023 6

COMING SOON…

Glass (normal, inert silica) storage

Microsoft says that one cube could
hold 360 terrabytes and survive for
billions of years without degradation

This is Satya Nadella holding a sample

CORNELL CS4414 - SPRING 2023 7

Laser “zaps” a tiny volume. It melts, then refreezes in a
controlled way that can encode up to 6 bits per voxel

(OR MAYBE NOT SO SOON…)

DNA storage?

DNA has even more capacity! The data is encoded in
powdered DNA, which is quite stable under ideal conditions.
Nobody even knows what the capacity limits would be.

Reading data would require DNA sequencing hardware
CORNELL CS4414 - SPRING 2023 8

GENERAL RULE…

The largest archival technologies are sometimes slow to access

Think of a “tape drive”. Incredible capacity, but you write it
once and read rarely. When you do read, it can be slow.

Used for rarely accessed data, but at times highly valuable

CORNELL CS4414 - SPRING 2023 9

GENERAL RULE

Memory is fastest, but as we saw, memory comes in a hierarchy

 In my address space, local NUMA memory
 In my address space, but remote NUMA memory
 On some other server, but in memory
 On my durable storage (flash memory or Optane). “The new disk”
 On the durable storage of some other server
 Archival storage… “Rotating disks are the new tape”.

CORNELL CS4414 - SPRING 2023 10

DOES IT MATTER?

There is roughly a 10x to 100x increase in delay and loss of
bandwidth at each layer.

… this even includes the network delays of GRPC over a
datacenter network. (For general applications, 100us, but for
MemCacheD when heavily optimized, can drop to 25-30us)

So the value of having data in memory (somewhere) is huge!
CORNELL CS4414 - SPRING 2023 11

CONNECTION TO SYSTEMS PROGRAMMING?

Up to now we focused on the single Linux box with NUMA cores,
programmed with C++ processes and bash scripts and other tricks.

But the application really is a part of an ecosystem that could
include many machines and the purpose may be to host and compute
on huge amounts of data.

If our goal is efficiency and performance, we need to learn a new
big-picture kind of perspective!

CORNELL CS4414 - SPRING 2023 12

SPECIAL ISSUES WITH REALLY BIG DATA

Parallel computing is important, especially for AI/ML

But parallel algorithms really need data in memory, or
“nearby”. Training a modern ML model can be infeasible if
data is on a slower technology.

In our last lecture we talked about caching. In-memory remote
caching offers an opportunity to use those ideas!

CORNELL CS4414 - SPRING 2023 13

WHAT ARE SOME REALLY BIG DATA EXAMPLES?

Companies like Apple, Microsoft, Facebook, etc. learn a lot
about their users over time.

This pool of data is enormous. It includes photos, videos, cross-
linked information about purchases and “click interests”, friends
and fans and where you live and what stores are nearby…

So this is one of the main big data use cases today.
CORNELL CS4414 - SPRING 2023 14

MORE EXAMPLES

The entire web (and the “deep web”, too)
 The web would include all the web pages we can reach
 The “deep web” is the world of next-level and further pages you can
 reach by clicking things, or that are specialized for individuals. It
 also includes product prices, which are a big deal for companies!
 The web evolves, and for many organizations we also keep old copies
 of everything (the “Internet Archive” time machine does this too)
 Beyond all of this, the deep web also includes books and their contents,
 newspapers and other forms of information, etc…

CORNELL CS4414 - SPRING 2023 15

MORE EXAMPLES

Think about astronomy, or particle physics, or gravity waves

The detectors often are worldwide structures, and some capture
insane amounts of data, too much to process even with massive
parallelism!

CORNELL CS4414 - SPRING 2023 16

WHAT ABOUT THE FUTURE WORLD OF IOT?

The term is short for “Internet of Things”, often written IoT

For example, smart traffic intersections linked to create a smart city.
Or smart homes that form a smart community.
 The houses could have lots of solar grids on their roofs
 If they join forces, they might produce a lot of electricity. And if they
 have batteries, we could store some, too.

All of this data (images, video, “lidar”, tracking data, “physical data”)…

CORNELL CS4414 - SPRING 2023 17

CORNELL CS4414 - SPRING 2023 18

FOR THIS LECTURE WE’LL FOCUS ON MEMCACHED

Memcached was born to “respond” to this big data need, and gave
rise to a whole way of thinking about data storage and access at
scale.

Companies like Facebook and Google were first to embrace it.

The idea seems trivial but gave rise to a whole world of parallel
algorithms for computing on data spread over millions of computers.

CORNELL CS4414 - SPRING 2023 19

CLOUD COMPUTING SOLUTIONS

The basic idea of the cloud is that someone like Amazon or
Microsoft (Azure) runs a giant computing center, and you rent
some of the machines in a “virtual private cluster”.

Your application basically owns this infrastructure, but you don’t
have to build everything from scratch.

They offer services that are tuned to work really well at scale.
CORNELL CS4414 - SPRING 2023 20

MEMCACHED CONCEPT

Originated in the 2003-2005 period.

Every programming language has some form of quick lookup
class, based on the idea of hashing or a tree structure.

This suggests that we could take a very minimal API and
standardize it for big data.

CORNELL CS4414 - SPRING 2023 21

MEMCACHED CONCEPT (MEMORY CACHE DAEMON)

The (entire!) API of MemCacheD:

 MemCacheD::put(string key, object value)

 object = MemCacheD::get(key)

Put saves a copy of the pair (key,value), replacing prior value.
Get will fetch the object, if it can be found.

CORNELL CS4414 - SPRING 2023 22

ISN’T THIS JUST A STD::UNORDERED_MAP?

C++ has a data structure that definitely can support the
MemCacheD API.

The main difference is that the std::unordered_map is on a
single computer, and is a C++ solution. Memcached might be on
many computers in a data center, and is useful from many
languages. Everyone “agrees” on the API.

CORNELL CS4414 - SPRING 2023 23

KEY ASPECT?

MemCacheD must give “in memory” (perhaps over a fast network)
performance. The data could be on durable storage as a fall-back,
but everything should have a flat cost for reads.

But… a cache doesn’t need to “remember” everything. Objects can
be evicted to make room.

When MemCacheD does get a cache hit, the performance should be
blazingly fast. O(1) lookups: GRPC overhead + data transfer cost.

CORNELL CS4414 - SPRING 2023 24

MEMCACHED CAN BE LOCAL (USEFUL WHEN
DEVELOPING NEW CODE)
As noted, C++ std::unordered_map has a similar API and would
be a great match to the MemCacheD standard. (std::map has
an O(log) lookup cost, but std::unordered_map is O(1)).

But no single-computer solution can hold a really big data set.
Your single computer only has a few 10’s of GB of memory

CORNELL CS4414 - SPRING 2023 25

REMOTE MEMCACHED RUNS AS A “DAEMON”

The idea is that your computer will have a way to use RPC to
talk to a pool of Memcached servers, all automatic so that you
won’t need to do anything special to set this up.

The actual servers would run on cloud computing machines. The
API is exactly the same. But now you get the total memory of
the complete pool of machines!

CORNELL CS4414 - SPRING 2023 26

A POOL OF DAEMONS…

You issue requests
via your local
daemon.

… but it might
forward to some
other daemon in
the pool

CORNELL CS4414 - SPRING 2023 27

MemCacheD on my machine

MemCacheD daemon

My
process

put(“some key”, obj)

WON’T THE NETWORK BE TOO SLOW?

In fact a modern datacenter network runs at speeds similar to
the internal “bus” between your NUMA core and one of the on-
board but non-local DRAM modules.

 The only issue is that although data transfer speeds are high,
 delay can be a barrier.

 A modern datacenter network might have minimal delays of
 1us. In contrast, accessing a DRAM module that isn’t close to
 your core might be 125 clock cycles: about 25x faster.

CORNELL CS4414 - SPRING 2023 28

SPEED OF REMOTE ACCESS IN A DATA CENTER

CORNELL CS4414 - SPRING 2023 29

This tells us that MemCacheD will be awesome for large objects, like images or web pages:
the overheads of getting to the server will be small compared to the data transfer times.

In contrast, if you are storing tiny objects, you might notice the delays much more, because
they will be more dominating than the data transfer time.

SO?

This tells us that MemCacheD will be awesome for large objects,
like images or web pages: the overheads of getting to the
server will be small compared to the data transfer times.

In contrast, if you are storing tiny objects, you might notice the
delays much more, because they will be more dominating than
the data transfer time.

CORNELL CS4414 - SPRING 2023 30

HOW DO THEY TRACK THE MACHINES IN THE POOL
OF MEMCACHED SERVERS?

You don’t really see this, but the daemon would use Zookeeper
or something similar.

When you link to the MemCacheD DLL and initialize it, the
library will look up the current membership of the service.

Now it has a list of all the machines running MemCacheD (IP
address and port numbers for each).

CORNELL CS4414 - SPRING 2023 31

WHICH MACHINE TO TALK TO?

In contrast with the case where we have an in-memory data structure,
like a std::unordered_map in your own process, MemCacheD has an
extra step of finding the server with the map that has your data.

Each MemCacheD server will have many data objects. We try to
spread the data evenly.

So we use the concept of “hashing a key”, but we do it twice.

CORNELL CS4414 - SPRING 2023 32

THE USUAL APPROACH

Hashing functions are standard and built into C++.

Hash the key of the (key,value) pair, mod the number of servers

 server_id = std::hash(key) % NSERVERS;

Now just do an RPC (like GRPC) to the server that owns this key!

CORNELL CS4414 - SPRING 2023 33

EXAMPLE

Perhaps your application uses keys that are strings with
pathnames deliberately similar to file system paths.

/users/Alicia/SmartFarm/Animals/CowImages/Cow76512

Hash will convert this string to a number, like 0x6AF615B80DDA71C

Normally we use a uint64_t for these hash values. Also called size_t.

CORNELL CS4414 - SPRING 2023 34

STD::HASH

std::hash defines a set of templated methods:

 auto string_hasher= std::hash<string>;

 size_t hashcode = string_hasher(my_string);

Other notations are also possible, but some look a bit odd.

CORNELL CS4414 - SPRING 2023 35

MANY KEYS MAP TO ANY SINGLE SERVER

With this approach, two very different keys might map to
exactly the same server-id.

This is why the server will still need to treat the data as a pool
of (key,value) pairs: it will probably use std::unordered_map!
 One O(1) hashing operation to decide which server to talk to
 One more, inside that server, to find the object
 Overhead of an RPC to send the request, and get the reply

CORNELL CS4414 - SPRING 2023 36

Zookeeper tracks
the membership

Key=Birman

ACCESSING (KEY,VALUE) STORAGE

CORNELL CS4414 - SPRING 2023 37

Value=

Hash(“Birman”)%100000

Each machine has a set of (key,value) tuples
stored in a local “Map” or perhaps on NVMe

IN EFFECT, TWO LEVELS OF HASHING!

Client

WHAT IF A SERVER JOINS, OR CRASHES?

This should be rare, but it could happen (like once in 8 hours)

When it does happen, we may need to shuffle (key,value) pairs
from where they were previously to their new location.

Ideally, we have some spare servers and one can just take over
from the failed machine. It will start with a cold cache, but we
minimize the shuffle delays.

CORNELL CS4414 - SPRING 2023 38

THIS IS NOT A LWAY S BENEFICIAL

In total, MemCacheD can hold a huge amount of data in memory

Durable storage I/O delays are larger than GRPC delays, and if we
are lucky and find our data, we avoid reading or recreating the
object from a file.

Payoff is best for large objects that were retrieved from some sort
of expensive database service or slow media.

CORNELL CS4414 - SPRING 2023 39

WHAT WOULD BE AN “EXPENSIVE” OBJECT
IDEAL FOR MEMCACHED?
Think about a photo or video that someone wants to view

Each device might have its own preferred screen size.
 Resizing on the device runs the battery down
 Resizing on the cloud is a good option, but once you have the object
 caching it will let you avoid recreating it again and again.

CORNELL CS4414 - SPRING 2023 40

WHAT MAKES THIS SO EFFECTIVE?

Many clients share the MemCacheD service: parallelism!

The service itself can hold all of those resized objects in fast
memory units (or perhaps even on local storage)

Resizing is slow and energy-intensive. Transmitting on a network
is quite cheap.

CORNELL CS4414 - SPRING 2023 41

WHAT WOULD BE A “BAD USE” OF MEMCACHED?

It may not pay off to cache small things, like a few blocks of a
file. Using memcached just wastes resources in such cases

The file system itself has effective caching mechanisms

Moreover, if the file system prefetcher anticipates the access,
data might be in local cache before you request it.

CORNELL CS4414 - SPRING 2023 42

MEMCACHED IS REALLY FOR TEMPORARY DATA

The intent was to create a big data cache, not a new file system.

A Memcached server is allowed to evict data if it needs room.

… even if a process used put to store some (key,value) pair,
don’t assume that get will find that object later!

CORNELL CS4414 - SPRING 2023 43

CAN WE DO BETTER?

This is a bit beyond CS4414, but many companies can use data
replication to build a MemCacheD that probably won’t lose
data if a server fails or a network link is transiently flaky.

For example, AWS (Amazon) has a MemCacheD service called
DynamoDB. It replicates every (key,value) tuple so that even in
a crash, data generally won’t be lost. You can access it as a
kind of database, which is why they added the “DB” part.

CORNELL CS4414 - SPRING 2023 44

WITH SOME SOLUTIONS, WE CAN REQUEST
REPLICATION FOR IMPROVED AVAILABILITY

CORNELL CS4414 - SPRING 2023 45

Key=“Ken” Value=

Hash(“Ken”)%100000

IN EFFECT, TWO LEVELS OF HASHING!

Zookeeper tracks
the membership

HOW DID THEY BUILD IT?

… not a CS4414 topic!

The puzzle is that doing data replication correctly is harder than
you might expect, because failures can leave confusing states.

The problem can be solved, and in fact Cornell is famous for
working on this. But the details are covered in CS5412, cloud
computing.

CORNELL CS4414 - SPRING 2023 46

WHAT MAKES IT HARD?

So far it probably sounds trivial: hash twice, use GRPC!

Data replication isn’t particularly hard either: you just take the
key, hash it to find the “primary” server, then “add 1” and hash
this new key. That can be the “backup”.

Each server ends up playing two roles.

CORNELL CS4414 - SPRING 2023 47

BUT MEMBERSHIP CHANGES COMPLICATE
THINGS!
When servers start up, or terminate (or crash), we need to
repair the Memcached server.

So these is a whole issue here of adding a new server to
replace one that failed or terminated.

We might also need to re-replicate data (this new server
“should” have some data it will be missing)

CORNELL CS4414 - SPRING 2023 48

THE WEAK SEMANTICS OF MEMCACHED ARE
A STRENGTH AND A WEAKNESS
Memcached seems very simple… partly because it makes no
real promise except that get returns “something” from a prior put

Yet if we have no guarantee that get will find the most recent
put results, we could actually see very old data… an “error”?

In fact staleness errors are rare (evictions are more common).

CORNELL CS4414 - SPRING 2023 49

ARE THERE “COHERENT” MEMCACHED’S?

A coherent cache would guarantee that the last data put into is the
value you read out, and that data won’t get lost or corrupted.

Coherent caches exist (Cornell created one!), but most products have
very weak guarantees. And even so, they are complex.

There is a tension between wanting to treat remote storage solutions
as local memory, and wanting them to be super fast, lightweight…

CORNELL CS4414 - SPRING 2023 50

DOESN’T THE PUT/GET API LIMIT USES?

In fact there are a dozen or more libraries that allow C++ to do
SQL-style queries, from code, directly on key-value stores.

A list of these can be found here.

 Two Ken has played with are SOCI (SOCI (sourceforge.net))
 and ODBC (C++ Object-Relational Mapping(codesynthesis.com))

 PyTorch and Tensor Flow (and other AI frameworks) use them too

CORNELL CS4414 - SPRING 2023 51

https://en.cppreference.com/w/cpp/links/libs#:%7E:text=A%20modern%20C++(14/17)%20cross-platform%20STL-styled%20and%20STL-compatible%20library%20with%20implementing
https://soci.sourceforge.net/
https://www.codesynthesis.com/products/odb/

SUMMARY

We are increasingly faced with really big data scenarios

A popular option is to use a platform (like a cloud) that offers
big data storage services.

Sometimes the real data would be on a slow device. But we can
cache large “slices” of it in a key-value store, like MemCacheD.

CORNELL CS4414 - SPRING 2023 52

	Storage at “big data” scale
	Idea Map For Today
	Big Data… can be huge!
	Special issues with really big data
	Memory/Storage Technology Hierarchy
	Slide Number 6
	Coming soon…
	(or maybe not so soon…)
	General rule…
	General Rule
	Does it matter?
	Connection to Systems Programming?
	Special issues with really big data
	What are some really big data examples?
	More examples
	More examples
	What about the future world of IOT?
	Slide Number 18
	For this lecture we’ll focus on Memcached
	Cloud computing solutions
	Memcached concept
	Memcached concept (Memory Cache Daemon)
	Isn’t this just a std::unordered_map?
	Key aspect?
	Memcached can be local (useful when developing new code)
	Remote Memcached runs as a “daemon”
	A pool of daemons…
	Won’t the network be too slow?
	Speed of remote access in a data center
	So?
	How do they track the machines in the pool of Memcached servers?
	Which machine to talk to?
	The usual approach
	Example
	Std::hash
	Many keys map to any single server
	Accessing (key,value) Storage
	What if a server joins, or crashes?
	This is not always beneficial
	What would be an “expensive” object ideal for memcached?
	What makes this so effective?
	What would be a “bad use” of memcached?
	MemCacheD is really for temporary data
	Can we do better?
	With some solutions, we can request replication for improved availability
	How did they build it?
	What makes it hard?
	But membership changes complicate things!
	The weak semantics of Memcached are a strength and a weakness
	Are there “coherent” memcached’s?
	Doesn’t the Put/Get API Limit uses?
	Summary

