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IDEA MAP FOR TODAY
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We have seen that file systems come in many 
shapes, sizes, and run in many places!

Yet what file systems are doing is inherently high-latency: Fetching 
bytes from some random place on a storage unit that may be a 

rotating physical platter accessed by moving read heads.

File systems hide this with caching and 
prefetching, but depend on predictable or 

observed behavior of the application

AI/ML systems increasingly span across many 
machines and the file system itself might even be 
on separate machines than the servers running the 

AI.  This forces the AI to do its own caching!

Goal of caching?  Track the “working set”



PERFORMANCE OF APPLICATIONS THAT DO 
HEAVY ACCESS TO FILE SYSTEMS
Application must open the file
  Linux will need to access the directory
  … scan it to find the name and inode number
  … load the inode into memory
  … check access permissions

So, opening a file will always involve 2 or more disk reads (more if the 
directory is large), unless this data happens to already be in cache.
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THE FUNDAMENTAL ISSUE?

Data transfers from a local disk are pretty fast
  They use a feature called direct memory access (DMA) 
  DMA can match memory speeds, if the disk can send/receive
    data that rapidly (some devices can, many can’t).

 Data transfers from a remote disk add a network hop, even if the network
 itself is a fancy one supporting “remote DMA” directly to application memory.

Thus, transfer speeds can be quite high, yet transfer delay (latency) is often a 
barrier, especially on “unanticipated” requests where Linux didn’t predict/prefetch
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LET’S SEE HOW THIS PLAYS OUT FOR A 
MODERN LLM
Today we will look at a typical large language model scenario

It involves
  Training the LLM to teach it the language and grammar rules,
    domain-specific terminology, resources it can leverage
  Building a repository of indexed, quickly accessible documents
  Running queries on this pre-trained model + pre-indexed data
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RAG LLM: THE WINNING STORY
FOR GENERATIVE AI!
Generative AI is trained offline: today’s models learned from 2020 data 
and hence need help from “current events” data!

RAG LLMs  form prompts by combining queries with relevant documents:

  Start with documents, chunks of text, or data of other kinds.

  Embed each object as a point in a high-dimensional space. 

  Given a query, embed it too, then search for the nearest neighbors
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WHY THIS TERMINOLOGY: “RAG”?

The term is part of “retrieval augmented generative language model”, 
hence RAG-LLM.   The RAG database is a special kind of database that 
can do approximate match.  It differs from the kind of “table lookup” seen 
in relational databases that use SQL for queries.

We call these vector databases.    They center on a notion of match 
distance and a way of doing lookup that minimizes the distance.

So our goal is to extend the LLM with a way to look for “relevant 
documents”, namely ones “approximately matched” to the query
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THERE ARE MANY STAGES IN A RAG LLM 
PIPELINE… 
For example, updates and queries for IVF employs:
  Document chunking, using a “transformer”
  Document and query embedding, again via a transformer
  Formation of a fast lookup index, to assist in queries
  When doing queries, approximate nearest neighbor search
  Enlarged prompt formation
  Actual generative response (and sanity/toxicity check)
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DOCUMENT CHUNKING: THE FIRST STAGE OF 
THE RAG LLM PIPELINE
Given a document, such as a medical office visit or the kind of 
“information about your sprained shoulder” document shared 
with patients…

  Scan the document, creating a sequence of language tokens

  Use a “transformer” to identify key concepts, terms, etc.

  Form small chunks centered on these concepts in the context
    where they arose, associated with a hyperlink to the full doc.
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A CHUNK

This information is typical
of data one might find in
the RAG database.  The 
LLM knows how to find it,
but did not “memorize it”.

The content comes directly
from trusted websites:
Mayo clinic and WebMD
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This probably came from a longer 
web page or document

Even more basic: How do they work?



EMBEDDING: THE NEXT STEP

There are many ways to do this, but they tend to use 
transformers

These focus on a tokenized chunk or query, and compute a “self-
attention weighted” numerical vector that maps similar inputs to 
similar locations in a high-dimensional space.
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THE WEIGHTS COME FROM TRAINING

We will revisit in a few minutes, but keep in mind that this step (and 
every step) centers on a very costly form of training.

For embedding, it centers on how those self-attention weights are 
computed: doing this involves training the model using a huge dataset 
of “tagged” data that shows the model what it should be doing.  This 
data takes the form of a huge set of files.

The model is big (and it ends up stored in a file).
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NEAREST NEIGHBORS

Arises in two ways

  When uploading documents, save them close to similar docs

  For a query, find the most relevant (nearest) documents

Each vector database product offers its own approximate match 
data structure (“index”).  Different products have different 
performance and efficiency.
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EXAMPLE 1: HNSW: ORGANIZES DOCS INTO A 
GRAPHICAL STRUCTURE, SEARCH VIA GRAPH-WALK.

Strengths:
  For individual queries, extremely fast
  Concept is simple and elegant

Limitations:
  Scales poorly if each server sees high volume query workloads
  Hard to distribute a single HNSW index over multiple servers if a 
    document repository exceeds capacity of the individual servers.
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No practical GPU 
acceleration options

Hierarchical Navigable Small Worlds 

HNSW is one approach…



EXAMPLE 2: IVF FORMS POINT-CLOUD 
CLUSTERS, USES THEM FOR FAST SEARCH
Similar concept, but with a multi-stage search

  Map documents to points (vectors) in high-dimensional space

  Run a clustering algorithm, create a list of centroids

  Query is similarly mapped (“embedded”), then find closest
    centroids, then search those clusters for closest documents
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Inverted Files

IVF is a second approach…



LET’S ASSUME THAT OUR RAG LLM IS USING
IVF.  (THIS IS AN ARBITRARY CHOICE)

Why might the RAG LLM have picked IVF?
  Point-cloud representations “shard” nicely for scalable storage
  K-NN in this representation has a linear algebraic formulation.
  With a GPU accelerator, efficiently handles queries in parallel.

In fact, many RAG LLMs use other methods.  But we want to 
understand file system access patterns and the role of caching and 
prefetching.  Focusing on one example already illustrates the issues.
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TRAINING AN IVF MODEL

Centers on building a whole series of ML language models

IVF seems like a simple idea, but in fact requires multiple stages 
just like the way that C++ compilation runs in stages.

Each stage is a separate program running a separate task.  
Some of these programs might themselves be distributed tasks!
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ML TRAINING IS ITERATIVE AND VERY SLOW!

The generative step for a LLM like Llama3 from Meta might have 80B 
model parameters.  The cutting edge OpenAI LLM has 175B.  The 
chunking and embedding stages have (smaller) models, too!

Training is done using the same pattern we looked at a week ago, 
AllReduce or its cousin, MapReduce

This occurs on a massive datacenter with thousands of machines
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TRAINING OCCURS OFFLINE

The (many) RAG LLM stages that need a trained LLM all have an 
offline computation that occurs long before we “deploy” the 
RAG LLM.

But whereas LLMs as recently as two years ago “memorized 
everything”, with a RAG approach the LLM is trained for specific 
roles, like breaking a document into chunks.
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TRAINING, MILE HIGH

OpenAI or Meta designs the model: heavy math, mostly GEMM 
(meaning: expressed in terms of matrix-multiplication).  

They start with a random set of model parameters, then iteratively 
improve them using stochastic gradient descent.  This can take months

The workers end up revisiting the same documents millions of times as 
the system gradually fine-tunes the model parameters
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ALL THIS WORK YIELDS JUST ONE COMPONENT 
(FOR EXAMPLE, THE DOCUMENT CHUNKER)

A similar training process is used for each of the other smart 
components.

Training occurs in modern “big data” cloud compute 
infrastructures operated by Microsoft, Amazon, Google or others

File caching is a giant issue, and Linux doesn’t do so well…
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FILE CACHING DURING TRAINING IS
DONE IN THE TRAINING SYSTEM ITSELF
During stochastic gradient descent various huge objects and files are 
created, plus the original documents (or other training data) is 
revisited again and again.

The developer team knows the odds that something will be reused, 
and how often.  But Linux doesn’t know this.

As a result we train on platforms like Spark/Databricks or Snowflake 
that allow the application to provide caching hints.  They then take 
over the caching role to obtain better performance than pure Linux
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AFTER EVERYTHING IS TRAINED WE CAN 
TACKLE DEPLOYMENT
Recall that we are interested in RAG LLMs.

The idea here is to train the LLM on “general” content, but not 
have it memorize that content.  

Instead we create specialist LLM components to chunk 
documents, “embed” them, etc.
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EMBEDDING CONCEPT

Matrix arithmetic is fast, so as much as possible AI and ML 
systems try to shift from working with text, images or other data 
to working with tensors: vectors, matrices, and higher dimensional 
objects too.

We say that we are “embedding” a document or query when 
we map it from the original text (or image, etc) form into a 
vector in some space defined by the LLM design team
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SINGLE DOCUMENT?  MULTIPLE 
EMBEDDINGS
For the RAG LLM case, one document yields many chunks

Each of these chunks probably gives one embedding vector, but 
it may be large (1024 * 32-bit Float = 4KB)

So one document could give us many embeddings: not 
a single vector but a matrix where each vector is one row.

CORNELL CS4414 - FALL 2024. 27Deeper dive on IVF



Documents

Chunks

Chunks

Chunks
Embeddings

Clusters

Scalable file system (shards with three servers per shard)

Document upload stage (can occur offline, or continuously)

IVF IN ACTION…  DOCUMENT UPLOAD WHILE BUILDING THE 
RAG DOCUMENT INDEX

Here we see upload after the LLM components are already 
trained.  For each document we chunk it, generate embeddings, 
then form clusters and identify their centroids.   Those are then 
stored into our file system
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Chunks

Chunks
Embeddings

Clusters

Document upload stage (can occur offline, or continuously)

Query and LLM result generation phase

Queries

K-NN on cluster
centroids

K-NN within
nearest clusters

Chunks

Generate
response, check

for toxicity

Aggregate

Select most relevant 
chunks, form LLM 

prompt

IVF WITH THE QUERY STAGE SHOWN, TOO

Scalable file system (shards with three servers per shard)
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UPLOAD IS DOMINATED BY WRITING TO THE FILE 
SYSTEM.  QUERIES ARE MOSTLY READ-ONLY

For the query stage, the LLM pipeline (the one on the bottom):

 Read the matrix of centroid data (many gigabytes in size), 

 For each cluster read the list of document embeddings held in 
   that cluster (again, huge).

 Read the actual document chunks and the URLs pointing to the 
   original document, to prompt the generative LLM

 Once deployed, queries are very dominant in today’s systems.
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DYNAMIC UPDATES?  A FUTURE FEATURE

By and large, RAG LLM systems aren’t currently doing a great deal 
of dynamic updating of the RAG database.

In time, they will: the RAG database will start to hold “current 
context” for the user, or the world.  Like minute-by-minute data about 
a football game, or an election.

But until that happens, each stage really runs separately: training, 
building the RAG data structure and querying.
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HOW WELL WILL LINUX BUILT-IN FILE SYSTEM 
CACHING PERFORM?
This question is the right one, but hard to answer

We really have a lot of programs running, each doing its own 
pattern of accesses.

Linux understands how to optimize for one process on one 
machine, but won’t optimize across this big distributed system
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… IMPLICATION?

Like we have seen for ML training systems, there will need to be 
more and more work on how to host inference (query) systems

These need to use the hardware efficiently and run at high 
speeds, and will not be able to “just trust Linux” cachine

Developing solutions for this space is a hot research topic today!
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CACHING: THE CORE CHALLENGE IS TO HAVE 
THE WORKING SET IN THE CACHE
We use this term in several situations.

Linux sometimes does paging to reduce the pressure on memory.  
A process has the working set in memory if all the instructions and 
data it actually touches when running are resident.

Similarly, the disk buffer pool holds the working set if it already 
has a copy of the files the application is likely to access.
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A WORKING SET IS A COLLECTION OF CACHED 
DATA LARGE ENOUGH TO HOLD EVERYTHING

The concept is that as we execute, we periodically hit repetitious 
situations in which the same data is accessed again and again

With luck (and enough memory!) we can “discover” and hold the 
working set.  Files won’t need to be re-fetched over the network
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CACHING ALGORITHMS

Cache retention is decided by an algorithm built into the Linux 
file system itself.  The algorithm is really the one used for 
eviction when we need more space.

For many years LRU was the most common (least recently used).  
LFU (least frequently used) was also explored.
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DENNING: WORKING SET (1968)

Peter Denning was the champion of working set algorithms

He showed that if we can estimate the length (in time) of these 
stable access periods, we can design an algorithm that will 
retain exactly the documents in current use: the working set.

Even a conservative estimate of the working set window works.
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DENNING FOCUSED ON VIRTUAL MEMORY AND PAGING

Here we see a list of pages being referenced by a program.  
But if it was a file system cache, same idea: these could either 
be whole files, or pages within files. 
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IS IT FAIR TO FOCUS ON PAGING 
ALGORITHMS?
Pages are not “whole files”

But in fact the working set idea is more general than Denning 
initially expected it to be.

His ideas for pages can be applied directly to whole-file caching
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HOW TO ASSESS EFFECTIVENESS OF 
WORKING SET AS A CACHING ALGORITHM
To evaluate WS, Denning defined a policy called WSOpt
  WSOpt has perfect knowledge of the future.
  For this algorithm (which cannot be implemented), the working set is 
   computed over the next ∆ references, not the last: R(t)..R(t+∆-1)

He compared WS with WSOpt.
  WSOpt has knowledge of the future…
  …yet even though WS is a practical algorithm with no ability to see 
    the future, the Hit and Miss ratios are identical for the two algorithms!
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KEY INSIGHT IN PROOF

Basic idea is to look at the paging decision made in WS at time 
t+∆-1 and compare with the decision made by WSOpt at time t

Both look at the same references… hence make same decision
  Namely, WSOpt tosses out page R(t-1) if it isn’t referenced “again” in 
   time t..t+∆-1
  WS running at time t+∆-1 tosses out page R(t-1) if it wasn’t 
    referenced in times t...t+∆-1 
  … and these are the same references!
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KEY STEP IN PROOF

At time t1 resident page set contains { 1,2,5,7 }
  WSOPT notices “5 will not be referenced in next 6 time units, and 
    pages 5 out at time t1
  WS will page 5 out too, but not until time t2

Page reference string

. . . 2 7 1 5 7 7 7 5 6 1 2 7 1 6 6 5 8 1 2 5 8 1 2 1 5 8 8 5 1 2 6 1 7 2 8 6 1 7 7 7 2 . . .

t1 t2

∆=6
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HOW DO WSOPT AND WS DIFFER?

WS maintains more pages in memory, because it needs ∆ time 
“delay” to make a paging decision
  In effect, it makes the same decisions, but after a time lag
  Hence these pages hang around a bit longer

43CORNELL CS4414 - FALL 2024.Insight: The real question is what to cache



WSOPT AND WS: SAME HIT RATIO!

WS is a little slower to remove pages from memory, but has the 
identical pattern of paging in and paging out, just time-lagged 
by ∆ time units

Thus WS and WSOPT have the identical hit and miss ratio…  a 
rare case of a “real” algorithm that achieves seemingly optimal 
behavior
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HOW DO WS AND LRU COMPARE?

In contrast, WS can outperform LRU in an important way.  
Suppose we use the same value of ∆
  WS removes pages if they aren’t referenced and hence keeps less    
    pages in memory
  When it does page things out, it is using an LRU policy!
   LRU will keep all ∆ pages in memory, referenced or not

Thus LRU often has a lower miss rate, but needs more memory.  
On platforms shared by multiple processes, WS really pays off
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WORKING SETS IN THE REAL WORLD
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DOES WS REMAIN THE SAME IF WE ARE 
MANAGING A CACHE OF FILES?
In fact, yes!

We do need a concept of how long the window should be (∆)

And we would only favor WS if the hardware is shared by 
multiple applications or users, who “contend” for cache space.  
But in that situation, it would dbe a good choice!

CORNELL CS4414 - FALL 2024. 47Insight: Linux prefetching may not be useful



WHAT ABOUT PREFETCHING?

In the word-count problem, prefetching was a huge win

It allowed us to 

  Open files before we would access them, to get that work 
    out of the way as a concurrent background task

  Access files sequentially so that block by block, they would be
    available as needed.
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WOULD PREFETCHING HELP FOR RAG LLM?

… not entirely clear!

Many AI systems prefer to have all the security checks done at 
one time, and then to load or store “whole files”

This leads to a key-value (KV) model: the key is the name of the 
file, and the value is the serialized byte vector with contents
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KEY VALUE CONCEPT

The idea is pretty trivial.

Instead of a file named “RAG-LLM/file0270” we just have a KV 
tuple.  The file name is the key and the contents are the value.

Access via v = get(k), or put(k, v).  Fewer system calls than with 
open/read/write/close.  Enables “whole document” caching.
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SWITCHING TO A KV MODEL ELIMINATES 
THAT ISSUE OF PRE-OPENING FILES
When the application first connects to the KV store, the 
permissions are checked.  After that, it can access any KV tuple

We call this binding.  It removes a big source of overhead!

The reason for whole-file access is that if we will be reading the 
whole file or writing it, why do it as a series of reads/writes?
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BUT KV STORES CAN DO CACHING TOO

Any high quality KV store will manage its own cache, probably right 
in the address space of the process using it.

This totally bypasses the Linux file system cache, yet uses the exact 
same ideas we have discussed!

Prefetching would now be harder: it would come down to 
anticipating what files (keys) will be accessed “next”, and having an 
API to tell the KV service: “now would be a smart time to fetch xxx”
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REMEMBER IVF?  IT REALLY WANTS “WHOLE 
FILE” STORAGE/RETRIEVAL…

Scalable file system (shards with three servers per shard)
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REMEMBER IVF?  IT REALLY WANTS “WHOLE 
FILE” STORAGE/RETRIEVAL: A KV STORE

Scalable KV store (shards with three servers per shard)
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WHAT IS ALL OF THIS TELLING US?

Given the huge importance of RAG LLM, these systems are 
receiving enormous attention.

They will need special-purpose “runtime hosting environments” 
and those systems will need their own caching solutions

  Ken and Alicia are developing Vortex as a research project.
    It focuses on these last two aspects, but especially queries.
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SUMMARY

Our first 21 lectures focused mostly on the single machine case.

We understand that pretty well… but the world has shifted to a 
kind of big-data, big-application model in which everything is 
distributed.

Many things we are used to in Linux need to be reexamined for 
this new world.  Otherwise, our systems run inefficiently!
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Hi!  I rule the world…



SUMMARY
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Hey Vortex, can you help me out?

Today we saw a RAG LLM design concept, and discussed 
training, RAG document upload and query pipelines.

Some ideas we learned about in prior lectures are relevant!

But we can also see that the world has changed, and we can’t 
simply assume that the old approaches are optimal.
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