
FILE SYSTEMS IN ML SETTINGS Professor Ken Birman
CS4414 Lecture 22

CORNELL CS4414 - FALL 2024. 1

IDEA MAP FOR TODAY

CORNELL CS4414 - FALL 2024. 2

We have seen that file systems come in many
shapes, sizes, and run in many places!

Yet what file systems are doing is inherently high-latency: Fetching
bytes from some random place on a storage unit that may be a

rotating physical platter accessed by moving read heads.

File systems hide this with caching and
prefetching, but depend on predictable or

observed behavior of the application

AI/ML systems increasingly span across many
machines and the file system itself might even be
on separate machines than the servers running the

AI. This forces the AI to do its own caching!

Goal of caching? Track the “working set”

PERFORMANCE OF APPLICATIONS THAT DO
HEAVY ACCESS TO FILE SYSTEMS
Application must open the file
 Linux will need to access the directory
 … scan it to find the name and inode number
 … load the inode into memory
 … check access permissions

So, opening a file will always involve 2 or more disk reads (more if the
directory is large), unless this data happens to already be in cache.

CORNELL CS4414 - FALL 2024. 3

THE FUNDAMENTAL ISSUE?

Data transfers from a local disk are pretty fast
 They use a feature called direct memory access (DMA)
 DMA can match memory speeds, if the disk can send/receive
 data that rapidly (some devices can, many can’t).

 Data transfers from a remote disk add a network hop, even if the network
 itself is a fancy one supporting “remote DMA” directly to application memory.

Thus, transfer speeds can be quite high, yet transfer delay (latency) is often a
barrier, especially on “unanticipated” requests where Linux didn’t predict/prefetch

CORNELL CS4414 - FALL 2024. 4

LET’S SEE HOW THIS PLAYS OUT FOR A
MODERN LLM
Today we will look at a typical large language model scenario

It involves
 Training the LLM to teach it the language and grammar rules,
 domain-specific terminology, resources it can leverage
 Building a repository of indexed, quickly accessible documents
 Running queries on this pre-trained model + pre-indexed data

CORNELL CS4414 - FALL 2024. 5How do LLMs use files?

RAG LLM: THE WINNING STORY
FOR GENERATIVE AI!
Generative AI is trained offline: today’s models learned from 2020 data
and hence need help from “current events” data!

RAG LLMs form prompts by combining queries with relevant documents:

 Start with documents, chunks of text, or data of other kinds.

 Embed each object as a point in a high-dimensional space.

 Given a query, embed it too, then search for the nearest neighbors

CORNELL CS4414 - FALL 2024. 6Even more basic: How do they work?

WHY THIS TERMINOLOGY: “RAG”?

The term is part of “retrieval augmented generative language model”,
hence RAG-LLM. The RAG database is a special kind of database that
can do approximate match. It differs from the kind of “table lookup” seen
in relational databases that use SQL for queries.

We call these vector databases. They center on a notion of match
distance and a way of doing lookup that minimizes the distance.

So our goal is to extend the LLM with a way to look for “relevant
documents”, namely ones “approximately matched” to the query

CORNELL CS4414 - FALL 2024. 7Even more basic: How do they work?

THERE ARE MANY STAGES IN A RAG LLM
PIPELINE…
For example, updates and queries for IVF employs:
 Document chunking, using a “transformer”
 Document and query embedding, again via a transformer
 Formation of a fast lookup index, to assist in queries
 When doing queries, approximate nearest neighbor search
 Enlarged prompt formation
 Actual generative response (and sanity/toxicity check)

CORNELL CS4414 - FALL 2024. 8Even more basic: How do they work?

DOCUMENT CHUNKING: THE FIRST STAGE OF
THE RAG LLM PIPELINE
Given a document, such as a medical office visit or the kind of
“information about your sprained shoulder” document shared
with patients…

 Scan the document, creating a sequence of language tokens

 Use a “transformer” to identify key concepts, terms, etc.

 Form small chunks centered on these concepts in the context
 where they arose, associated with a hyperlink to the full doc.

CORNELL CS4414 - FALL 2024. 9Even more basic: How do they work?

A CHUNK

This information is typical
of data one might find in
the RAG database. The
LLM knows how to find it,
but did not “memorize it”.

The content comes directly
from trusted websites:
Mayo clinic and WebMD

CORNELL CS4414 - FALL 2024. 10

This probably came from a longer
web page or document

Even more basic: How do they work?

EMBEDDING: THE NEXT STEP

There are many ways to do this, but they tend to use
transformers

These focus on a tokenized chunk or query, and compute a “self-
attention weighted” numerical vector that maps similar inputs to
similar locations in a high-dimensional space.

CORNELL CS4414 - FALL 2024. 11Even more basic: How do they work?

THE WEIGHTS COME FROM TRAINING

We will revisit in a few minutes, but keep in mind that this step (and
every step) centers on a very costly form of training.

For embedding, it centers on how those self-attention weights are
computed: doing this involves training the model using a huge dataset
of “tagged” data that shows the model what it should be doing. This
data takes the form of a huge set of files.

The model is big (and it ends up stored in a file).

CORNELL CS4414 - FALL 2024. 12Even more basic: How do they work?

NEAREST NEIGHBORS

Arises in two ways

 When uploading documents, save them close to similar docs

 For a query, find the most relevant (nearest) documents

Each vector database product offers its own approximate match
data structure (“index”). Different products have different
performance and efficiency.

CORNELL CS4414 - FALL 2024. 13Even more basic: How do they work?

EXAMPLE 1: HNSW: ORGANIZES DOCS INTO A
GRAPHICAL STRUCTURE, SEARCH VIA GRAPH-WALK.

Strengths:
 For individual queries, extremely fast
 Concept is simple and elegant

Limitations:
 Scales poorly if each server sees high volume query workloads
 Hard to distribute a single HNSW index over multiple servers if a
 document repository exceeds capacity of the individual servers.

CORNELL CS4414 - FALL 2024. 14HNSW is one approach…

EXAMPLE 1: HNSW: ORGANIZES DOCS INTO A
GRAPHICAL STRUCTURE, SEARCH VIA GRAPH-WALK.

Strengths:
 For individual queries, extremely fast
 Concept is simple and elegant

Limitations:
 Scales poorly if each server sees high volume query workloads
 Hard to distribute a single HNSW index over multiple servers if a
 document repository exceeds capacity of the individual servers.

CORNELL CS4414 - FALL 2024. 15

No practical GPU
acceleration options

Hierarchical Navigable Small Worlds

HNSW is one approach…

EXAMPLE 2: IVF FORMS POINT-CLOUD
CLUSTERS, USES THEM FOR FAST SEARCH
Similar concept, but with a multi-stage search

 Map documents to points (vectors) in high-dimensional space

 Run a clustering algorithm, create a list of centroids

 Query is similarly mapped (“embedded”), then find closest
 centroids, then search those clusters for closest documents

CORNELL CS4414 - FALL 2024. 16IVF is a second approach…

EXAMPLE 2: IVF FORMS POINT-CLOUD
CLUSTERS, USES THEM FOR FAST SEARCH
Similar concept, but with a multi-stage search

 Map documents to points (vectors) in high-dimensional space

 Run a clustering algorithm, create a list of centroids

 Query is similarly mapped (“embedded”), then find closest
 centroids, then search those clusters for closest documents

CORNELL CS4414 - FALL 2024. 17

Inverted Files

IVF is a second approach…

LET’S ASSUME THAT OUR RAG LLM IS USING
IVF. (THIS IS AN ARBITRARY CHOICE)

Why might the RAG LLM have picked IVF?
 Point-cloud representations “shard” nicely for scalable storage
 K-NN in this representation has a linear algebraic formulation.
 With a GPU accelerator, efficiently handles queries in parallel.

In fact, many RAG LLMs use other methods. But we want to
understand file system access patterns and the role of caching and
prefetching. Focusing on one example already illustrates the issues.

CORNELL CS4414 - FALL 2024. 18IVF is just one of many options…

TRAINING AN IVF MODEL

Centers on building a whole series of ML language models

IVF seems like a simple idea, but in fact requires multiple stages
just like the way that C++ compilation runs in stages.

Each stage is a separate program running a separate task.
Some of these programs might themselves be distributed tasks!

CORNELL CS4414 - FALL 2024. 19Deeper dive on IVF

ML TRAINING IS ITERATIVE AND VERY SLOW!

The generative step for a LLM like Llama3 from Meta might have 80B
model parameters. The cutting edge OpenAI LLM has 175B. The
chunking and embedding stages have (smaller) models, too!

Training is done using the same pattern we looked at a week ago,
AllReduce or its cousin, MapReduce

This occurs on a massive datacenter with thousands of machines

CORNELL CS4414 - FALL 2024. 20Deeper dive on IVF

TRAINING OCCURS OFFLINE

The (many) RAG LLM stages that need a trained LLM all have an
offline computation that occurs long before we “deploy” the
RAG LLM.

But whereas LLMs as recently as two years ago “memorized
everything”, with a RAG approach the LLM is trained for specific
roles, like breaking a document into chunks.

CORNELL CS4414 - FALL 2024. 21Deeper dive on IVF

TRAINING, MILE HIGH

OpenAI or Meta designs the model: heavy math, mostly GEMM
(meaning: expressed in terms of matrix-multiplication).

They start with a random set of model parameters, then iteratively
improve them using stochastic gradient descent. This can take months

The workers end up revisiting the same documents millions of times as
the system gradually fine-tunes the model parameters

CORNELL CS4414 - FALL 2024. 22How training accesses files!

ALL THIS WORK YIELDS JUST ONE COMPONENT
(FOR EXAMPLE, THE DOCUMENT CHUNKER)

A similar training process is used for each of the other smart
components.

Training occurs in modern “big data” cloud compute
infrastructures operated by Microsoft, Amazon, Google or others

File caching is a giant issue, and Linux doesn’t do so well…

CORNELL CS4414 - FALL 2024. 23Can file caching be effective here?

FILE CACHING DURING TRAINING IS
DONE IN THE TRAINING SYSTEM ITSELF
During stochastic gradient descent various huge objects and files are
created, plus the original documents (or other training data) is
revisited again and again.

The developer team knows the odds that something will be reused,
and how often. But Linux doesn’t know this.

As a result we train on platforms like Spark/Databricks or Snowflake
that allow the application to provide caching hints. They then take
over the caching role to obtain better performance than pure Linux

CORNELL CS4414 - FALL 2024. 24Can file caching be effective here?

AFTER EVERYTHING IS TRAINED WE CAN
TACKLE DEPLOYMENT
Recall that we are interested in RAG LLMs.

The idea here is to train the LLM on “general” content, but not
have it memorize that content.

Instead we create specialist LLM components to chunk
documents, “embed” them, etc.

CORNELL CS4414 - FALL 2024. 25Back to IVF and RAG LLMs

EMBEDDING CONCEPT

Matrix arithmetic is fast, so as much as possible AI and ML
systems try to shift from working with text, images or other data
to working with tensors: vectors, matrices, and higher dimensional
objects too.

We say that we are “embedding” a document or query when
we map it from the original text (or image, etc) form into a
vector in some space defined by the LLM design team

CORNELL CS4414 - FALL 2024. 26Deeper dive on IVF

SINGLE DOCUMENT? MULTIPLE
EMBEDDINGS
For the RAG LLM case, one document yields many chunks

Each of these chunks probably gives one embedding vector, but
it may be large (1024 * 32-bit Float = 4KB)

So one document could give us many embeddings: not
a single vector but a matrix where each vector is one row.

CORNELL CS4414 - FALL 2024. 27Deeper dive on IVF

Documents

Chunks

Chunks

Chunks
Embeddings

Clusters

Scalable file system (shards with three servers per shard)

Document upload stage (can occur offline, or continuously)

IVF IN ACTION… DOCUMENT UPLOAD WHILE BUILDING THE
RAG DOCUMENT INDEX

Here we see upload after the LLM components are already
trained. For each document we chunk it, generate embeddings,
then form clusters and identify their centroids. Those are then
stored into our file system

CORNELL CS4414 - FALL 2024. 28Deeper dive on IVF

Documents

Chunks

Chunks

Chunks
Embeddings

Clusters

Document upload stage (can occur offline, or continuously)

Query and LLM result generation phase

Queries

K-NN on cluster
centroids

K-NN within
nearest clusters

Chunks

Generate
response, check

for toxicity

Aggregate

Select most relevant
chunks, form LLM

prompt

IVF WITH THE QUERY STAGE SHOWN, TOO

Scalable file system (shards with three servers per shard)

CORNELL CS4414 - FALL 2024. 29Deeper dive on IVF

UPLOAD IS DOMINATED BY WRITING TO THE FILE
SYSTEM. QUERIES ARE MOSTLY READ-ONLY

For the query stage, the LLM pipeline (the one on the bottom):

 Read the matrix of centroid data (many gigabytes in size),

 For each cluster read the list of document embeddings held in
 that cluster (again, huge).

 Read the actual document chunks and the URLs pointing to the
 original document, to prompt the generative LLM

 Once deployed, queries are very dominant in today’s systems.

CORNELL CS4414 - FALL 2024. 30Deeper dive on IVF

DYNAMIC UPDATES? A FUTURE FEATURE

By and large, RAG LLM systems aren’t currently doing a great deal
of dynamic updating of the RAG database.

In time, they will: the RAG database will start to hold “current
context” for the user, or the world. Like minute-by-minute data about
a football game, or an election.

But until that happens, each stage really runs separately: training,
building the RAG data structure and querying.

CORNELL CS4414 - FALL 2024. 31Deeper dive on IVF

HOW WELL WILL LINUX BUILT-IN FILE SYSTEM
CACHING PERFORM?
This question is the right one, but hard to answer

We really have a lot of programs running, each doing its own
pattern of accesses.

Linux understands how to optimize for one process on one
machine, but won’t optimize across this big distributed system

CORNELL CS4414 - FALL 2024. 32Finally! Our file system topic!

… IMPLICATION?

Like we have seen for ML training systems, there will need to be
more and more work on how to host inference (query) systems

These need to use the hardware efficiently and run at high
speeds, and will not be able to “just trust Linux” cachine

Developing solutions for this space is a hot research topic today!

CORNELL CS4414 - FALL 2024. 33

CACHING: THE CORE CHALLENGE IS TO HAVE
THE WORKING SET IN THE CACHE
We use this term in several situations.

Linux sometimes does paging to reduce the pressure on memory.
A process has the working set in memory if all the instructions and
data it actually touches when running are resident.

Similarly, the disk buffer pool holds the working set if it already
has a copy of the files the application is likely to access.

CORNELL CS4414 - FALL 2024. 34Insight: The real question is what to cache

A WORKING SET IS A COLLECTION OF CACHED
DATA LARGE ENOUGH TO HOLD EVERYTHING

The concept is that as we execute, we periodically hit repetitious
situations in which the same data is accessed again and again

With luck (and enough memory!) we can “discover” and hold the
working set. Files won’t need to be re-fetched over the network

CORNELL CS4414 - FALL 2024. 35Insight: The real question is what to cache

CACHING ALGORITHMS

Cache retention is decided by an algorithm built into the Linux
file system itself. The algorithm is really the one used for
eviction when we need more space.

For many years LRU was the most common (least recently used).
LFU (least frequently used) was also explored.

CORNELL CS4414 - FALL 2024. 36Insight: The real question is what to cache

DENNING: WORKING SET (1968)

Peter Denning was the champion of working set algorithms

He showed that if we can estimate the length (in time) of these
stable access periods, we can design an algorithm that will
retain exactly the documents in current use: the working set.

Even a conservative estimate of the working set window works.

CORNELL CS4414 - FALL 2024. 37Insight: The real question is what to cache

DENNING FOCUSED ON VIRTUAL MEMORY AND PAGING

Here we see a list of pages being referenced by a program.
But if it was a file system cache, same idea: these could either
be whole files, or pages within files.

38CORNELL CS4414 - FALL 2024.Insight: The real question is what to cache

IS IT FAIR TO FOCUS ON PAGING
ALGORITHMS?
Pages are not “whole files”

But in fact the working set idea is more general than Denning
initially expected it to be.

His ideas for pages can be applied directly to whole-file caching

CORNELL CS4414 - FALL 2024. 39Insight: The real question is what to cache

HOW TO ASSESS EFFECTIVENESS OF
WORKING SET AS A CACHING ALGORITHM
To evaluate WS, Denning defined a policy called WSOpt
 WSOpt has perfect knowledge of the future.
 For this algorithm (which cannot be implemented), the working set is
 computed over the next ∆ references, not the last: R(t)..R(t+∆-1)

He compared WS with WSOpt.
 WSOpt has knowledge of the future…
 …yet even though WS is a practical algorithm with no ability to see
 the future, the Hit and Miss ratios are identical for the two algorithms!

40CORNELL CS4414 - FALL 2024.Insight: The real question is what to cache

KEY INSIGHT IN PROOF

Basic idea is to look at the paging decision made in WS at time
t+∆-1 and compare with the decision made by WSOpt at time t

Both look at the same references… hence make same decision
 Namely, WSOpt tosses out page R(t-1) if it isn’t referenced “again” in
 time t..t+∆-1
 WS running at time t+∆-1 tosses out page R(t-1) if it wasn’t
 referenced in times t...t+∆-1
 … and these are the same references!

41CORNELL CS4414 - FALL 2024.Insight: The real question is what to cache

KEY STEP IN PROOF

At time t1 resident page set contains { 1,2,5,7 }
 WSOPT notices “5 will not be referenced in next 6 time units, and
 pages 5 out at time t1
 WS will page 5 out too, but not until time t2

Page reference string

. . . 2 7 1 5 7 7 7 5 6 1 2 7 1 6 6 5 8 1 2 5 8 1 2 1 5 8 8 5 1 2 6 1 7 2 8 6 1 7 7 7 2 . . .

t1 t2

∆=6

CORNELL CS4414 - FALL 2024. 42Insight: The real question is what to cache

HOW DO WSOPT AND WS DIFFER?

WS maintains more pages in memory, because it needs ∆ time
“delay” to make a paging decision
 In effect, it makes the same decisions, but after a time lag
 Hence these pages hang around a bit longer

43CORNELL CS4414 - FALL 2024.Insight: The real question is what to cache

WSOPT AND WS: SAME HIT RATIO!

WS is a little slower to remove pages from memory, but has the
identical pattern of paging in and paging out, just time-lagged
by ∆ time units

Thus WS and WSOPT have the identical hit and miss ratio… a
rare case of a “real” algorithm that achieves seemingly optimal
behavior

CORNELL CS4414 - FALL 2024. 44Insight: The real question is what to cache

HOW DO WS AND LRU COMPARE?

In contrast, WS can outperform LRU in an important way.
Suppose we use the same value of ∆
 WS removes pages if they aren’t referenced and hence keeps less
 pages in memory
 When it does page things out, it is using an LRU policy!
 LRU will keep all ∆ pages in memory, referenced or not

Thus LRU often has a lower miss rate, but needs more memory.
On platforms shared by multiple processes, WS really pays off

45CORNELL CS4414 - FALL 2024.Insight: The real question is what to cache

WORKING SETS IN THE REAL WORLD

CORNELL CS4414 - FALL 2024. 46Working set: A winning caching algorithm!

DOES WS REMAIN THE SAME IF WE ARE
MANAGING A CACHE OF FILES?
In fact, yes!

We do need a concept of how long the window should be (∆)

And we would only favor WS if the hardware is shared by
multiple applications or users, who “contend” for cache space.
But in that situation, it would dbe a good choice!

CORNELL CS4414 - FALL 2024. 47Insight: Linux prefetching may not be useful

WHAT ABOUT PREFETCHING?

In the word-count problem, prefetching was a huge win

It allowed us to

 Open files before we would access them, to get that work
 out of the way as a concurrent background task

 Access files sequentially so that block by block, they would be
 available as needed.

CORNELL CS4414 - FALL 2024. 48Insight: Linux prefetching may not be useful

WOULD PREFETCHING HELP FOR RAG LLM?

… not entirely clear!

Many AI systems prefer to have all the security checks done at
one time, and then to load or store “whole files”

This leads to a key-value (KV) model: the key is the name of the
file, and the value is the serialized byte vector with contents

CORNELL CS4414 - FALL 2024. 49Insight: Linux prefetching may not be useful

KEY VALUE CONCEPT

The idea is pretty trivial.

Instead of a file named “RAG-LLM/file0270” we just have a KV
tuple. The file name is the key and the contents are the value.

Access via v = get(k), or put(k, v). Fewer system calls than with
open/read/write/close. Enables “whole document” caching.

CORNELL CS4414 - FALL 2024. 50In fact, RAG LLMs don’t even use files!

SWITCHING TO A KV MODEL ELIMINATES
THAT ISSUE OF PRE-OPENING FILES
When the application first connects to the KV store, the
permissions are checked. After that, it can access any KV tuple

We call this binding. It removes a big source of overhead!

The reason for whole-file access is that if we will be reading the
whole file or writing it, why do it as a series of reads/writes?

CORNELL CS4414 - FALL 2024. 51… but everything we said about files applies

BUT KV STORES CAN DO CACHING TOO

Any high quality KV store will manage its own cache, probably right
in the address space of the process using it.

This totally bypasses the Linux file system cache, yet uses the exact
same ideas we have discussed!

Prefetching would now be harder: it would come down to
anticipating what files (keys) will be accessed “next”, and having an
API to tell the KV service: “now would be a smart time to fetch xxx”

CORNELL CS4414 - FALL 2024. 52… but everything we said about files applies

Documents

Chunks

Chunks

Chunks
Embeddings

Clusters

Document upload stage (can occur offline, or continuously)

Query and LLM result generation phase

Queries

K-NN on cluster
centroids

K-NN within
nearest clusters

Chunks

Generate
response, check

for toxicity

Aggregate

Select most relevant
chunks, form LLM

prompt

REMEMBER IVF? IT REALLY WANTS “WHOLE
FILE” STORAGE/RETRIEVAL…

Scalable file system (shards with three servers per shard)

CORNELL CS4414 - FALL 2024. 53We thought this RAG LLM uses files

Documents

Chunks

Chunks

Chunks
Embeddings

Clusters

Document upload stage (can occur offline, or continuously)

Query and LLM result generation phase

Queries

K-NN on cluster
centroids

K-NN within
nearest clusters

Chunks

Generate
response, check

for toxicity

Aggregate

Select most relevant
chunks, form LLM

prompt

REMEMBER IVF? IT REALLY WANTS “WHOLE
FILE” STORAGE/RETRIEVAL: A KV STORE

Scalable KV store (shards with three servers per shard)

CORNELL CS4414 - FALL 2024. 54… KV stores are best for whole files

WHAT IS ALL OF THIS TELLING US?

Given the huge importance of RAG LLM, these systems are
receiving enormous attention.

They will need special-purpose “runtime hosting environments”
and those systems will need their own caching solutions

 Ken and Alicia are developing Vortex as a research project.
 It focuses on these last two aspects, but especially queries.

CORNELL CS4414 - FALL 2024. 55RAG LLMs are a big topic for research too!

SUMMARY

Our first 21 lectures focused mostly on the single machine case.

We understand that pretty well… but the world has shifted to a
kind of big-data, big-application model in which everything is
distributed.

Many things we are used to in Linux need to be reexamined for
this new world. Otherwise, our systems run inefficiently!

CORNELL CS4414 - FALL 2024. 56

Hi! I rule the world…

SUMMARY

CORNELL CS4414 - FALL 2024. 57

Hey Vortex, can you help me out?

Today we saw a RAG LLM design concept, and discussed
training, RAG document upload and query pipelines.

Some ideas we learned about in prior lectures are relevant!

But we can also see that the world has changed, and we can’t
simply assume that the old approaches are optimal.

	File Systems in ML Settings
	Idea Map For Today
	Performance of applications that do heavy access to file systems
	The fundamental issue?
	Let’s see how this plays out for a modern LLM
	RAG LLM: The Winning Story�For Generative AI!
	Why this terminology: “rag”?
	There are many stages in a RAG LLM pipeline…
	Document chunking: The first stage of the RAG LLM Pipeline
	A chunk
	Embedding: The next step
	The weights come from training
	Nearest neighbors
	Example 1: HNSW: Organizes docs into a graphical structure, Search via graph-walk.
	Example 1: HNSW: Organizes docs into a graphical structure, Search via graph-walk.
	Example 2: IVF forMs point-cloud �clusters, uses them for fast search
	Example 2: IVF forMs point-cloud �clusters, uses them for fast search
	Let’s assume that our RAG LLM is using�IVF. (This is an arbitrary choice)
	Training an IVF model
	ML training is iterative and very slow!
	Training occurs offline
	Training, mile high
	All this work yields just one component (for example, the document chunker)
	File caching during training is�done in the training system itself
	After everything is trained we can tackle deployment
	Embedding concept
	Single document? Multiple embeddings
	IVF in action… Document upload while building the RAG document index
	IVF with the query stage shown, too
	Upload is dominated by writing to the file system. Queries are mostly read-only
	Dynamic updates? A future feature
	How well will Linux built-in file system caching perform?
	… implication?
	Caching: The core challenge is to have the working set in the cache
	A working set is a collection of cached data large enough to hold everything
	Caching algorithms
	Denning: Working Set (1968)
	Denning focused on virtual memory and paging
	Is it fair to focus on paging algorithms?
	How to assess effectiveness of Working Set as a caching algorithm
	Key insight in proof
	Key step in proof
	How do WSOpt and WS differ?
	WSOPT and WS: same hit ratio!
	How do WS and LRU compare?
	Working Sets in the Real World
	Does WS remain the same if we are managing a cache of files?
	What about prefetching?
	Would prefetching help for RAG LLM?
	Key Value concept
	Switching to a KV model eliminates that issue of pre-opening files
	But KV stores can do caching too
	Remember IVF? It really wants “whole file” storage/retrieval…
	Remember IVF? It really wants “whole file” storage/retrieval: A KV Store
	What is all of this telling us?
	Summary
	Summary

