
SHARING DATA IN
MULTI-PROCESS APPLICATIONS

Professor Ken Birman
CS4414 Lecture 19

CORNELL CS4414 - SPRING 2023 1

IDEA MAP FOR TODAY

CORNELL CS4414 - SPRING 2023 2

Linux offers too many choices! They include pipes,
mapped files (shared memory), DLLs.

Linux weakness: the “single machine” look and feel.

Modern solutions of this kind often need to run on
clusters of computers or in the cloud, and need sharing

approaches that work whether processes
are local (same machine) or remote.

Complex Systems often have
many processes in them. They are not
always running on just one computer.

As a developer, you think of the cloud itself as a
kind of distributed operating system kernel, offering

tools that work from “anywhere”.

LARGE, COMPLEX SYSTEMS

Large systems often involve multiple processes that need to
share data for various reasons.

Components may be in different languages: Java, Python, C++,
O’CaML, etc…

Big applications are also broken into pieces for software
engineering reasons, for example if different teams collaborate

CORNELL CS4414 - SPRING 2023 3

MODERN SYSTEMS DISTINGUISH TWO CASES

Many modern systems use “standard libraries” to interface to
storage systems, or for other system services.

You think of the program as an independent agent, but it uses
the same library as other programs in the application.

Here, the focus is on how to build libraries that many languages
can access. C++ is a popular choice.

CORNELL CS4414 - SPRING 2023 4

LOCAL OPTIONS

These assume that the two (or more) programs or modules live
on the same machine.

They might be coded in different languages, which also can
mean that data could be represented in memory in different
ways (especially for complicated objects or structures – but even
an integer might have different representations!)

CORNELL CS4414 - SPRING 2023 5

SINGLE ADDRESS SPACE, TWO
(OR MORE) LANGUAGES

Issue: They may not
use the same data
representations!

CORNELL CS4414 - SPRING 2023 6

EXAMPLE 1: JAVA NATIVE INTERFACE

The Java Native Interface (JNI) allows Java applications to talk
to libraries in languages like C or C++.

In effect, you build a Java “wrapper” for each library method.

JNI will load the C++ DLL at runtime and verify that it has the
methods you expected to find.

CORNELL CS4414 - SPRING 2023 7

JNI DATA TYPE CONVERSIONS

JNI has special accessor methods to access data in C++, and
then the wrapper can create Java objects that match.

For some basic data types, like int or float, no conversion is
needed. For complex ones, where conversion does occur, the
cost is similar to the cost of copying.

JNI is generally viewed as a high-performance option
CORNELL CS4414 - SPRING 2023 8

EXAMPLE 2: FORTRAN TO C++

Fortran is a very old language, and the early versions made
memory structs visible and very easy to access.

This is still true of modern Fortran: the language has evolved
enormously, but it remains easy to talk to “native” data types.

So Fortran to C++ is particularly effective.

CORNELL CS4414 - SPRING 2023 9

EXAMPLE 3: PYTHON TO C++ (TRICKY)

There are many Python implementations.

The most widely popular ones are coded in C and can easily
interface to C++. There are also versions coded in Java, etc.

But because Python is an interpreter, Python applications can’t
just call into C++ without a form of runtime reflection.

CORNELL CS4414 - SPRING 2023 10

HOW PYTHON FINESSES THIS

Python is often used control computations in “external” systems.

For example, we could write Python code to tell a C++ library to
load a tensor, multiply it by some matrix, invert the result, then
compute the eigenvalues of the inverted matrix…

The data could live entirely in C++, and never actually be moved
into the Python address space at all! Or it could even live in a GPU

CORNELL CS4414 - SPRING 2023 11

PYTHON INTEGERS

One example of why it isn’t so trivial to just share data is that Python
has its own way of representing strings and even integers

A Python integer will use native representations and arithmetic if the
integer is small. But Python automatically switches to a larger
number of bits as needed and even to a Bignum version.

So… if Python wants to send an integer to C++, we run into the risk
that a C++ integer just can’t hold the value!

CORNELL CS4414 - SPRING 2023 12

SOLUTION? USE “BINDINGS”

Boost.Python leverages this basic mechanism to let you call Python
from C++ or C++ from Python.
1) You need to create a plain C (not C++) “interface” layer.
 These methods can only take native data types + pointers.
2) Compile it and create a DLL. In Python, load this DLL, then
 import the interface methods.
4) Now you can call those plain C methods, if you follow
 certain (well-documented) rules (like: no huge integers!). To
 call an object instance method, you pass a pointer to the object
 and then the arguments, as if “this” was a hidden extra argument.

CORNELL CS4414 - SPRING 2023 13

EXAMPLE 4: MICROSOFT DOTNET CLR

Microsoft has many supported languages, including C++ on
Ubuntu (just install WSL2 on your laptop)

But C# (a variant of Java) is probably the most popular.

It turns out that ALL of them can talk to C++ via something
called the dotnet common language runtime (dotnet CLR).

CORNELL CS4414 - SPRING 2023 14

ISSUE IS SIMILAR TO PYTHON, JAVA

As with those languages, you do need to decide if the memory
for objects will be hosted in dotnet or hosted in C++

For objects hosted in dotnet there are methods you call to
prevent garbage collection or compaction while your C++ is
active. For objects hosted in C++, the dotnet languages can use
“unsafe” memory pointers to access them

CORNELL CS4414 - SPRING 2023 15

SHARING WITH
DIFFERENT PROCESSES

Issue: They have
different address
spaces!

CORNELL CS4414 - SPRING 2023 16

SHARING BETWEEN DIFFERENT PROCESSES

Large multi-component systems that explicitly share objects from
process to process need tools to help them do this.

Unlike language-to-language, the processes won’t be linked
together into a single address space. The options depend on
where the processes doing this sharing are running.

CORNELL CS4414 - SPRING 2023 17

IF PROCESSES ARE ON A SINGLE (NUMA) MACHINE,
WE HAVE A FEW “OLD” SHARING OPTIONS:

1. Single address space, threads share memory directly.
2. Linux pipes. Assumes a “one-way” structure.
3. Shared files. Some programs could write data into files; others could

later read those files.
4. Mapped files. Same idea, but now the readers can instantly see the

data written by the (single) writer. Also useful as a way to skip past
the POSIX API, which requires copying (from the disk to the kernel,
then from the kernel into the user’s buffer).

5. Shared segment. Same as mapped files, but without a file!

CORNELL CS4414 - SPRING 2023 18

DIMENSIONS TO CONSIDER

Performance, simplicity, security. Some methods have very
different characteristics than others.

Ease of later porting the application to a different platform . Some
modern systems are built as a collection of processes on one
machine, but over time migrate to a cluster of computers.

Standardization. Whatever we pick, it should be widely used.

CORNELL CS4414 - SPRING 2023 19

LET’S LOOK AT SOME EXAMPLES

The C++ command runs a series of sub-programs:
1. The “C preprocessor”, to deal with #define, #if, #include
2. The template analysis and expansion stage
3. The compiler, which has a parsing stage, a compilation stage, and an

optimization stage.
4. The assembler
5. The linker
… they share data by creating files, which the next stage can read

CORNELL CS4414 - SPRING 2023 20

WHY DOES C++ USE FILE SHARING?

C++ was created as a multi-process solution for a single computer. In the
old days we didn’t have an mmap system call.

Also, since one process writes a file, and the next one reads it sequentially
and “soon”, after which it gets deleted, Linux is smart enough to keep the
whole file in cache and might never even put it on disk.

There are many such examples on Linux. Most, like C++, have a controlling
process that launches subprocesses, and most share files from stage to stage.

CORNELL CS4414 - SPRING 2023 21

MMAP/SHMEN OPTION

We learned about mmap when we first saw the POSIX file system API.
At one time people felt that mmap could become the basis for shared
objects in Linux.

Linux allocates a segment of memory for the mapped file or shared
memory segment. The system call returns a pointer to its base address.

Idea: create a shared memory segment, then allocate objects in it.

CORNELL CS4414 - SPRING 2023 22

A SHARED SEGMENT IS JUST LIKE ANY
OTHER SEGMENT IN YOUR ADDRESS SPACE
Only permits a single writer. (But you can always have two shared
segments, one for each direction.) Different processes may see a
shared segment at different base addresses.

If the data being shared is some form of raw information, like pixels
in a video display, or numbers in a matrix, it works well.

Mmap starts with a file and changes are saved to disk. Shmem is
just a pure shared memory segment.

CORNELL CS4414 - SPRING 2023 23

MAPPED FILES ARE WIDELY USED FOR
FINANCIAL TRADING SYSTEMS
Many Wall Street trading firms have real-time ticker feeds of
prices for the stocks and bonds and derivatives they trade.

Often this is managed via a daemon that writes into a shared
file. The file holds the history of prices.

By mapping the head of the file, processes can track updates.
A library accesses the actual data and handles memory fencing.

CORNELL CS4414 - SPRING 2023 24

LINUX ITSELF USES MAPPED FILES

The DLL concept (“linking”) is based on a mapped file.

In that case the benefits are these:
 The file actually contains executable instructions. These must be in
 memory for the CPU to decode and execute.
 But the DLL can be shared between multiple applications, saving
 memory and improving L3 caching performance.

CORNELL CS4414 - SPRING 2023 25

MAPPING OFTEN ISN’T THE WHOLE STORY

When we share data between processes we might

 Only share data a process has permission to see

 Leverage read-only access to avoid synchronization. For
 interactive cases, p and q could share two segments:

 Force Linux to put the segments at the same address to
 enable them to hold pointer-based data structures, like trees

 Use remap, signal handling to implement dynamic access

CORNELL CS4414 - SPRING 2023 26

SHARING WITH PROCESSES ON
DIFFERENT MACHINES

Issue: Now we need
to also deal with
the network

CORNELL CS4414 - SPRING 2023 27

NETWORKED SETTINGS REQUIRE DIFFERENT
APPROACHES
When we run in a networked environment, we need tools that
will work seamlessly even if the processes are on different
machines.

Mapped files or segments are single-machine solutions. Mmap
can be made to work over a network, but performance is
disappointing and this option is not common.

CORNELL CS4414 - SPRING 2023 28

CLOUD COMPUTING

In other courses, you’ll use modern cloud computing systems.

Those are like a large multicomputer kernel, with services that
programs can use no matter which machine they run on.

Cloud computing has begun to reshape the ways we develop
complex programs even on a single Linux machine.

CORNELL CS4414 - SPRING 2023 29

DIFFERENT MACHINES + INTERNET

1. We will learn about TCP soon… like a pipe, but between
machines. This extends the pipe option to the cloud case!

2. We could use a technique called “remote procedure call”
where one process can invoke a method in a remote on. We
will learn about this soon, too.

3. We could pretend that everything is a web service, and use
the same tools that web browsers are built from.

CORNELL CS4414 - SPRING 2023 30

AMAZON.COM

Prior to 2005, Amazon web pages were created by a single
server per page. But these servers were just not fast enough.

Famous study: 100ms delay reduces profits by nearly 10%

Today, a request is handled by a “first tier” server supported by
a collection of services (as many as 100 per page)

CORNELL CS4414 - SPRING 2023 31

AMAZON INVENTED CLOUD COMPUTING! THEN
GOOGLE AND MICROSOFT TOOK IT MUCH FURTHER.

The Amazon services are used by browsers from all over the
world: a networked model.

And Amazon’s explicit goal was to leverage warehouses full of
computers (modern “cloud computing” data centers).

… So Amazon is a great example of a solution that needs to
use networking techniques.

CORNELL CS4414 - SPRING 2023 32

INSIDE THE CLOUD?

Users of cloud computing platforms like Amazon’s AWS, Microsoft’s
Azure, or Google Cloud don’t need to see the internals.

They see a file system that is available everywhere, as well as other
kernel services that look the same from every machine.

The individual machine runs Linux, yet these services make it very
easy to spread one application over multiple machines!

CORNELL CS4414 - SPRING 2023 33

FLASK AND WEB SERVICES

Early in the Amazon era, the company needed a lot of machines
for peak load bursts but wanted to rent them out.

So they offered a way to

 Copy your web site to AWS, renting their machines for this

 Doing a kind of remote request to a cloud-hosted service
 through your company web site.

CORNELL CS4414 - SPRING 2023 34

REST RPC

Any program can call any web site that exports a REST API.
 Example: Your company web site could have an AWS service
 with a method to “Upload the current AQI data”
 Then it could sell AQI sensors that link via the Internet and upload
 air quality data periodically
 Like calling upload(sensor-id, PM2.5, O3, ….) but the request
 turns into a message. The actual upcall occurs on a cloud server
 The most popular package for using REST is called FLASK. It
 supports Javascript, Java and C++

CORNELL CS4414 - SPRING 2023 35

PURPLE AIR WEBSITE FOR ITHACA…

CORNELL CS4414 - SPRING 2023 36

Ken’s house is on this!

And in fact there is a
global version of this
too, called acqicn.org

WHAT ABOUT CORBA?

This is an older standard but very widely used

REST encodes RPC requests as web pages and uses HTTP or
HTTPS to connect via the same protocol used by browsers

CORBA doesn’t use this extra HTTP/HTTPS encoding

CORNELL CS4414 - SPRING 2023 37

AIR TRAFFIC CONTROL

Ken worked on the French ATC solution. It uses CORBA

This system has been continuously active since 1996. It runs on a
private cloud, but uses cloud-computing ideas.

ATC systems have many modules that cooperate. The “flight
plan” is the most important form of shared information.

CORNELL CS4414 - SPRING 2023 38

AIR TRAFFIC CONTROL SYSTEM

CORNELL CS4414 - SPRING 2023 39

. . .

Air traffic controllers
update flight plans

Flight plan manager tracks current and
past flight plan versions. Replicated

for ultra-high reliability.
Message bus

“Microservices” for various tasks, such as checking future
plane separations, scheduling landing times, predicting

weather issues, offering services to the airlines

WAN link to other ATC centers

Flight plan update
broadcast service

SOFTWARE ENGINEERING AT LARGE SCALE

Big modern applications are created by software teams

They define modular components, which could co-exist in one
address space or might be implemented by distinct programs

There is a science of software engineering that focuses on best
ways of collaborating on big tasks of this kind.

CORNELL CS4414 - SPRING 2023 40

SOFTWARE ENGINEERING AT LARGE SCALE

Each team needs a way to work independently and concurrently.

The teams agree on specifications for each component, then build,
debug and unit test their component solutions.

We often pre-agree on some of the unit tests: “release validation”
tests and “acceptance” tests. Integration occurs later when all the
elements seem to be working.

CORNELL CS4414 - SPRING 2023 41

MULTI-LINGUAL ISSUE

Modularity permits us to use different languages for different tasks.
For example, a great deal of existing ATC code is in Fortran 77.

Byte arrays (or text files, character strings) are a least common
denominator. Every language has a way to easily access them.

Modern systems have converged around the idea that this matches
best with some form of “message passing”.

CORNELL CS4414 - SPRING 2023 42

WHERE IS THIS SEEN IN THE ATC SYSTEM?

The flight plan record is a good example.

We want to save and load it from a shared, fault-tolerant
database service. Many programs might access it.

… and they might not all be using the same byte order for
basic data types!

CORNELL CS4414 - SPRING 2023 43

BYTE ORDER (ENDIAN) ISSUE

Intel and AMD favor Little Endian. Suppose we store
0x12345678 in a 32-bit integer at address 1000:

But ARM (used on Raspberry pi) offers both options. This
example is Big Endian:

CORNELL CS4414 - SPRING 2023 44

0x12345678 0x78 0x56 0x34 0x12

Byte at memory
address 1000

Byte at memory
address 1003

0x12345678 0x12 0x34 0x56 0x78

ISSUES CAUSED BY PADDING RULES

When we create an object with multiple data fields in it, the
C++ compiler has to define a corresponding struct that will hold
the data.

The “alignment requirements” for different fields can vary for
different hardware. So though Intel and AMD use Little Endian,
the same object might have a different layout in memory!

CORNELL CS4414 - SPRING 2023 45

WHAT TO DO?

No need to do anything if we always work in just one hardware
architecture, where the same layout and endian policy applies.

But if a system will combine elements from different sources that
use different hardware, a second option is to use a “serialization
and deserialization” library. These “interoperate”

CORNELL CS4414 - SPRING 2023 46

SERIALIZATION/DESERIALIZATION

Converting an object to a byte array serializes the object and
any associated annotations. Deserializing recreates the object.

A serialized object can be stored in a file, or we can use a
“message passing” technology to send them from process to
process over a network.

CORNELL CS4414 - SPRING 2023 47

ADVANTAGE TO USING A SERIALIZATION
PACKAGE: IT CAN DO MORE!

Of course, there are limitations. For example, strings could be
plain ascii, but could also encode languages like Chinese,
Russian, Japanese… It is not always meaningful to interoperate

Moreover, even if everything else is the same, the OS itself
decides if printed output lines should end with \n or \r\n

CORNELL CS4414 - SPRING 2023 48

FULLY ANNOTATED OBJECTS?

Many systems also wish to include information to document
application version numbers at patch level, data types in use,
sizes of arrays, requirements or assumptions that methods are
making, limits on sizes of things, permissions required, etc.

There is very little agreement on how these annotations should
look, or what to do if sender and receiver do not match.

CORNELL CS4414 - SPRING 2023 49

APPLICATIONS CODED IN DIFFERENT
PROGRAMMING LANGUAGES/SYSTEMS
A system of this kind often has components in C++, components in
Java or Python, components in Fortran. One might use Tensor Flow,
another could be using PyTorch

(And for historical accuracy: There were periods when many
government or military systems favored Cobol, or Ada!)

How are objects like “flight plans” shared between components
written in different languages?

CORNELL CS4414 - SPRING 2023 50

NETWORKING STANDARDS AND FLEXIBILITY

If we think about Linux pipes, they are extremely simple and
flexible. The main cost is simply that the data itself is a byte
stream.

Developers began to question all of these shared memory ideas
and complexities. Are they worth all the trouble?

CORNELL CS4414 - SPRING 2023 51

LIKE POSIX, A STANDARD SPECIFIES RULES THAT VENDORS
AGREE TO RESPECT, TO FACILITATE INTEROPERABILITY.

CORBA: A standard architecture for sharing objects between
programs or components from many languages or developers.

Google RPC (GRPC): A faster way for a client program to invoke a
method in a server, perhaps over the Internet. Optimized for
systems where “sender” and “receiver” are on the same hardware
and using the same OS.

Web services: An approach in which web pages in HTML are used to
share information between programs. Widely available but slow.

CORNELL CS4414 - SPRING 2023 52

COST ANALYSIS EXAMPLE: AIR TRAFFIC
FLIGHT PLAN IN THE ATC SYSTEM WE SAW
In memory, a flight plan is generally no more than 125k bytes.

With CORBA encoding, this grows to between 1MB and 10MB
 All numbers are “printed out”, usually in base 10
 CORBA includes details on the way the data types were declared,
 version information, etc.

Effect? In some ATC settings, the system spends more time encoding and
decoding flight plans than controlling aircraft!

CORNELL CS4414 - SPRING 2023 53

WHERE ARE OBJECTS MOVED OR SHARED?

CORNELL CS4414 - SPRING 2023 54

. . .

Air traffic controllers
update flight plans

Flight plan manager
tracks current and past

flight plan versions
Message bus

Microservices for various tasks, such as checking future
plane separations, scheduling landing times, predicting

weather issues, offering services to the airlines

WAN link to other ATC centers

Flight plan update
broadcast service

WHERE ARE OBJECTS MOVED OR SHARED?

CORNELL CS4414 - SPRING 2023 55

. . .

Air traffic controllers
update flight plans

Flight plan manager
tracks current and past

flight plan versions
Message bus

Microservices for various tasks, such as checking future
plane separations, scheduling landing times, predicting

weather issues, offering services to the airlines

WAN link to other ATC centers

Flight plan update
broadcast service

WHERE ARE OBJECTS MOVED OR SHARED?

CORNELL CS4414 - SPRING 2023 56

. . .

Air traffic controllers
update flight plans

Flight plan manager
tracks current and past

flight plan versions
Message bus

Microservices for various tasks, such as checking future
plane separations, scheduling landing times, predicting

weather issues, offering services to the airlines

WAN link to other ATC centers

Flight plan update
broadcast service

WHEN DO WE SERIALIZE/DESERIALIZE?

Each time an object is read or written (from disk or network)

Each time an object is passed from one module to another

CORNELL CS4414 - SPRING 2023 57

Time →

ATC
controller

Version
Mgr

Message
Bus

ATC rules
checker . . .

Points at which we might do
serialization/deserializationO

ve
rh

ea
d
→

COST IMPLICATIONS

Potentially, a major source of overhead!

Often, it is best to store a complex serialized object in a file,
and then just pass the file name from place to place. Then the
CORBA object just has a few bytes in it (very cheap).

In a complex application where the actual fields in the object
aren’t needed by many modules, this reduces costs dramatically!

CORNELL CS4414 - SPRING 2023 58

WHY WOULD A MODULE NOT LOOK AT THE
DATA?
In the air traffic example, some modules just look at a few fields.

The WAN module is responsible for sharing updates with other air
traffic control centers. It doesn’t need to actually see the details.

… in fact, several modules simply move objects from process to process.

… all of these would be happy with just sharing the object name.

CORNELL CS4414 - SPRING 2023 59

OLD APPROACH

Each time an object is read or written (from disk or network)

Each time an object is passed from one module to another

CORNELL CS4414 - SPRING 2023 60

Time →

ATC
controller

Version
Mgr

Message
Bus

ATC rules
checker . . .

Points at which we might do
serialization/deserializationO

ve
rh

ea
d
→ Wasted work!

SHARING OBJECT NAMES, ONLY FETCH THE
DATA IF THE MODULE REALLY REQUIRES IT
We only do a costly action when the module will actually touch
the inner data fields!

CORNELL CS4414 - SPRING 2023 61

Time →

ATC
controller

Version
Mgr

Message
Bus

ATC rules
checker . . .

Dual scheme reduces overheads!

A A B B B B B B B B B A B B B

O
ve

rh
ea

d
→

Here we fetch the full data for the flight
plan from the flight plan database

SUMMARY

Modular design creates a need for processes to share data.

In a single Linux system, pipes and file sharing are by far the
most common models. But there are some important uses of
shared memory.

The options are easy to use, but we need to be very aware of
overheads and costs!

CORNELL CS4414 - SPRING 2023 62

	Sharing Data in �Multi-Process Applications
	Idea Map For Today
	Large, complex systems
	Modern systems distinguish two cases
	Local options
	Single Address space, two (or more) languages
	Example 1: Java Native Interface
	JNI data type conversions
	Example 2: Fortran to C++
	Example 3: Python to C++ (tricky)
	How Python finesses this
	Python integers
	Solution? Use “bindings”
	Example 4: Microsoft dotnet CLR
	Issue is similar to Python, Java
	Sharing with �different processes
	Sharing between different processes
	If processes are on a Single (NUMA) machine, we have a few “old” sharing options:
	Dimensions to consider
	Let’s look at some examples
	Why does C++ use file sharing?
	Mmap/shmen option
	A shared segment is just like any other segment in your address space
	mapped files are widely used for financial trading systems
	Linux itself uses mapped files
	Mapping often isn’t the whole story
	Sharing with processes on �different machines
	Networked settings require different approaches
	Cloud computing
	Different machines + Internet
	Amazon.com
	Amazon invented cloud computing! then Google and Microsoft took it much further.
	Inside the cloud?
	FLASK and Web Services
	Rest RPC
	Purple Air WebSite For Ithaca…
	What about CORBA?
	Air Traffic control
	Air traffic Control System
	Software engineering at large scale
	Software engineering at large scale
	Multi-lingual issue
	Where is this seen in the ATC system?
	Byte Order (Endian) issue
	Issues caused by Padding rules
	What to do?
	Serialization/Deserialization
	Advantage to using a serialization package: It can do more!
	Fully annotated objects?
	Applications coded in different programming languages/systems
	Networking standards and flexibility
	Like POSIX, a standard specifies rules that vendors agree to respect, to facilitate interoperability.
	Cost analysis example: Air Traffic Flight plan in the ATC system we saw
	Where are objects moved or shared?
	Where are objects moved or shared?
	Where are objects moved or shared?
	When do we serialize/Deserialize?
	Cost implications
	Why would a module not look at the data?
	Old approach
	Sharing object names, only fetch the data if the module really requires it
	Summary

