
COORDINATION PATTERNS Professor Ken Birman
CS4414 Lecture 18

CORNELL CS4414 - SPRING 2023 1

IDEA MAP FOR TODAY

Today we focus on other patterns for coordinating threads or
entire processes.

CORNELL CS4414 - SPRING 2023 2

Lightweight vs. Heavyweight

Thread “context”

C++ mutex objects. Atomic data types.

Reminder: Thread Concept

Deadlocks and Livelocks

The monitor pattern in C++

Problems monitors solve (and problems they don’t solve)

Additional Coordination Patterns

WITHOUT COORDINATION, MANY SYSTEMS
MALFUNCTION
Performance can drop unexpectedly

Overheads may soar

A coordination pattern is a visual or intellectual tool that we use
when designing concurrent code, whether using threads or
processes. It “inspires” a design that works well.

CORNELL CS4414 - SPRING 2023 3

WHAT IS A COORDINATION PATTERN?

Think about producer-consumer (cupcakes and kids).
 The producer pauses if the display case is full
 The consumers wait if we run out while a batch is baking

This is an example of a coordination pattern.

CORNELL CS4414 - SPRING 2023 4

Producers

Bounded buffer

Consumers

PRODUCER – CONSUMER PATTERN

CORNELL CS4414 - SPRING 2023 5

Producer thread(s) Consumer thread(s)

Bounded Buffer

ANALOGY: SOFTWARE DESIGN PATTERNS

Motivation: Early object-oriented programming approaches had a
very flat perspective on programs:

 We had objects, including data structures.
 Threads operated on those objects.

Developers felt that it was hard to capture higher-level system
structures and behaviors by just designing some class.

CORNELL CS4414 - SPRING 2023 6

MODULARITY FOR COMPLEX, THREADED
PROGRAMS
With larger programs, we invariably need to break the overall
system up and think of it in terms of subsystems.

Each of these may have its own classes, its own threads, and its
own internal patterns of coordination and behavior.

When a single system has many such “modules” side by side, the
patterns used shape the quality of the resulting application

CORNELL CS4414 - SPRING 2023 7

SOME EXAMPLES.

Fast-wc had a main thread, a thread for opening files (a form
of module), a set of concurrent word counters, logic to merge the
resulting std::map trees, and finally logic for sorting and printing
the output.

We can think of this structure in a modular way. In fact, we need
to think of it in a modular way to understand it!

CORNELL CS4414 - SPRING 2023 8

Main thread File opener Word-count
workers

WHAT EXACTLY DOES “MODULAR” MEAN?

A modular way of describing a system breaks it down into large
chunks that may have complex implementations, but that offer
simple abstraction barriers to one-another.

The operating system has many modules: the file system, the
device drivers, the process management system, the clock system

Each involves a substantial but “separate” chunk of code.
CORNELL CS4414 - SPRING 2023 9

CHOICES JUMP OUT AT US…

Should we share data, and protect it with locks, or monitors? Or
even use atomic data types?

Should we avoid sharing data even at the cost of using more
memory (for example, the extra copies of std::map objects used
in Ken’s word counter, one per thread)? This brings costs, too (in
that example, the need to merge the sub-count trees at the end)

CORNELL CS4414 - SPRING 2023 10

MORE EXAMPLES
Databases are integrated into modern systems (in PyTorch or
TensorFlow you can just do SQL queries inline, and there is a way to
do that in C++ too!)

… these bind to databases, and each one of those is a complex
service that deals with concurrent users, scaling, prefetching, fault-
tolerance

Yet the user doesn’t see any of this complexity and is even unaware
of the other concurrent users.

CORNELL CS4414 - SPRING 2023 11

MORE EXAMPLES

Web servers at companies like Amazon, Facebook, Netflix

The Linux kernel

The C++ compiler

CORNELL CS4414 - SPRING 2023 12

SOFTWARE DESIGN PATTERNS

There is some similarity between “synchronization” patterns and
“software design patterns”.

Basic idea: Problems that often arise in object oriented programs,
and effective, standard ways of solving them.

CORNELL CS4414 - SPRING 2023 13

EXAMPLE: THE OBJECT VISITOR PATTERN

The visitor pattern associates virtual functions with existing classes.

The class offers a static method that permits the caller to provide an
object (a “functor”) that implements this function interface. The base
class keeps a list of visitors, and will call those functions when objects
of the base-class type are created or modified.

With this you can build new logic that takes some action that was not
already part of the design when the base class was created!

CORNELL CS4414 - SPRING 2023 14

REMINDER: INTERFACES

In a C++ .hpp file, one normally puts the declarations of classes
and templates, but the bodies are often in a .cpp file.

A “virtual” class is one that has a .hpp file defining it, but no
implementations. An interface is a standardized virtual class.

A C++ class can “implement” an interface, and then you can
pass class objects to any method that accepts the interface type.

CORNELL CS4414 - SPRING 2023 15

EXAMPLE OF HOW YOU MIGHT USE VISITOR

Suppose that you wanted to “monitor” a collection of files.

With this visitor pattern, you attach a notifier to the directory
those files live in. The file system supports this form of visitation
but doesn’t know who will use it in the future.

Each time a file changes, your program receives a notification.

CORNELL CS4414 - SPRING 2023 16

HOW TO THINK ABOUT THE VISITOR IDEA

Consider a restaurant pager.

You place a take-out order but then can
 go outside or wander around.

When your food is ready the pager wakes up and this notifies
you. No need for the food preparer to do anything more.

CORNELL CS4414 - SPRING 2023 17

VISITOR PATTERN USE CASES

The visitor pattern is common with file systems: it allows an
application with files open to “refresh” if a change occurs.

It is also useful with GUI displays. If something changes, the
application can refresh or even recompute its layout.

CORNELL CS4414 - SPRING 2023 18

The visitor “interface” is
a fully virtual class with

an event notification
method. The service
will treat application

objects as instances of
visitor objects

KEY ELEMENTS OF THIS PATTERN

CORNELL CS4414 - SPRING 2023 19

The visitor is an object
in some application

written after the
service was created.

The application object
derives from
(implements)

the notification
interface.

The service doesn’t
know what objects
will be using it, but

can use the interface
class to notify

“future customers”.

KEY ELEMENTS OF THIS PATTERN

CORNELL CS4414 - SPRING 2023 20

The application class derives from
(implements) the base class, but
extends it with other application

functionality

Visitor Interface is a base class

WHY GIVE THIS PATTERN A SPECIAL NAME
AND THINK OF IT AS A STANDARD?
Visitor is a well known pattern and even taught in courses on
software engineering. We sometimes teach it in CS2110

So anyone who sees a comment about it, and then sees the
Watch method, knows immediately what this is and how to use it.

In effect, it is a standard way to do “refresh notifications”

CORNELL CS4414 - SPRING 2023 21

WHY IS THIS SUCH A BIG DEAL?

By allowing modules to standardize the way that they
coordinate and interact, patterns bring a uniform way to create
bigger systems from modular components.

The monitored module doesn’t know who will monitor it, but does
know how to notify those future watchers.

The watchers simply need to implement the required interface
CORNELL CS4414 - SPRING 2023 22

FACTORY PATTERN

Another example from software engineering.

A “factory” is a method that will create some class of objects on
behalf of a caller that doesn’t know anything about the class.

Basically, it does an allocation and calls a constructor, and then
returns a pointer to the new object.

CORNELL CS4414 - SPRING 2023 23

WHY A FACTORY IS USEFUL

If module A has code that explicitly creates an object of type
Foo, C++ can type check the code at compile time.

But if module B wants to “register” class Foo so that A can
create Foo objects, A might be compiled separately from B.

The factory pattern enables B to do this. A requires a factory
interface (for any kind of object), and B registers a Foo factory

CORNELL CS4414 - SPRING 2023 24

WHY A FACTORY IS USEFUL

… without the factory, this same coordination is quite hard!

By allowing B to offer a factory that creates “widget objects” A
has a way to ask B to create new B objects (derived from
widget) and yet A doesn’t even know the definition of class B.

B simply needs to implement the factory interface
CORNELL CS4414 - SPRING 2023 25

TEMPLATES ARE OFTEN USED TO IMPLEMENT
MODERN C++ DESIGN PATTERNS
A template can instantiate standard logic using some new type that
the user supplies. So this is a second and powerful option that
doesn’t require virtual functions and upcalls.

For example, we could do this for our bounded buffer. It would
allow you to create a bounded buffer for any kind of object.

The bounded buffer pattern is valid no matter what objects it holds.

CORNELL CS4414 - SPRING 2023 26

SUMMARY: WHY STANDARD SOFTWARE
ENGINEERING PATTERNS HELP
They address the needs of larger, more modular systems

They are familiar and have standard structures. Developers
who have never met still can quickly understand them.

They express functionality we often find valuable. If many
systems use similar techniques to solve similar problems, we can
create best-practice standards.

CORNELL CS4414 - SPRING 2023 27

SYNCHRONIZATION PATTERNS

These are patterns that stretch across threads or even between
processes. They can even be used in computer networks, where
the processes are on different machines!

Producer consumer is a synchronization pattern.

CORNELL CS4414 - SPRING 2023 28

SYNCHRONIZATION PATTERNS

Leader / workers is a second widely valuable synchronization
pattern.

In this pattern, some thread is created to play the leader role.
A set of workers will perform tasks on its behalf.

CORNELL CS4414 - SPRING 2023 29

LEADER / WORKERS PATTERN

CORNELL CS4414 - SPRING 2023 30

Leader thread Worker threads

Tasks to be performed
(“peel these potatoes”)

LEADER / WORKERS PATTERN

CORNELL CS4414 - SPRING 2023 31

Leader thread Worker threads

Tasks to be performed
(“peel these potatoes”)

LEADER / WORKERS PATTERN

CORNELL CS4414 - SPRING 2023 32

Leader thread Worker threads

Bag is empty? Workers
terminate (threads exit)

LEADER / WORKERS PATTERN

We need a way to implement the bag of work.

One can pass arguments to the threads, but this is very rigid. If
we have lots of tasks, it may be better to be flexible.

So the bag of work will be some form of queue. You’ll need to
protect it with locking! (Why?)

CORNELL CS4414 - SPRING 2023 33

Word-to-do queue

POOL OF TASKS

One option is to just fill a std::list with tasks to be performed,
using a “task description object”. Then launch threads.

The list has a front and a back, which can be useful if the task
order matters. Some versions support priorities (a “priority
queue”).

It is easy to test to see if the list is empty.
CORNELL CS4414 - SPRING 2023 34

A std::list!

DYNAMIC TASK POOLS

Permits the leader to add tasks while the workers are running.
 The workers each remove a task from the pool, execute it, and then
 when finished, loop back and remove the next task.
 They may even use a second std::list to send results back to the leader!
 C++ calls this a promise pattern, supported by a std::promise library!
 But we can’t use “empty” to signal that we are finished (why?). So,
 the leader explicitly pushes some form of special objects that say “job
 done” at the end of the task pool. As workers see these, they exit.

CORNELL CS4414 - SPRING 2023 35

EXAMPLE: LOGISTIC REGRESSION

In AI, it is common to have a parameter server that creates a
model, and a set of workers that work to train the model from
examples. Later we will use the model as a classifer.
 Worker takes the current model plus some data files, computes a
 gradient, and passes this to the parameter server (the leader)
 Parameter server consumes the gradients, improves the model, then
 assigns a new task to the worker.
 Terminates when the model has converged.

CORNELL CS4414 - SPRING 2023 36

BARRIER SYNCHRONIZATION

In this pattern, we have a set of threads (perhaps, the workers
from our logistic regression example).

We use this pattern if we want all our threads to finish task A
before any starts on task B.

For this, we use a barrier.

CORNELL CS4414 - SPRING 2023 37

BUILDING A BARRIER

We normally use the monitor pattern.

The threads all call “barrier_wait”. This method uses a bool array
to track which threads are ready, initialized to all false.

When all are ready, the thread that notices this issues notify_all to
wake the others up. They wake up nearly simultaneously.

CORNELL CS4414 - SPRING 2023 38

BUILDING A BARRIER

Example: A computation with
distinct phases or epochs.

After phase one, all workers
must wait until phase two starts.

CORNELL CS4414 - SPRING 2023 39

Worker threads

Time
Phase one

BUILDING A BARRIER

Example: A computation with
distinct phases or epochs.

After phase one, all workers
must wait until phase two starts.

CORNELL CS4414 - SPRING 2023 40

Worker threads

Time

Phase one

Barrier
1 Done 3 Done

2 Done

All are done! Phase two can start

BUILDING A BARRIER

Example: A computation with
distinct phases or epochs.

After phase one, all workers
must wait until phase two starts.

CORNELL CS4414 - SPRING 2023 41

Worker threads

Time

Phase one

Barrier

Phase two

ORDERED MULTICAST PATTERN

This is a one-to-many pattern. Suppose some event occurs.

A sender thread needs every worker to see an object describing the
event, so it puts that object on every worker’s work queue.

The pattern permits multiple senders: A sender locks all of the work
queues, then emplaces the request, then unlocks. Thus all workers see
the same ordering of requests.

CORNELL CS4414 - SPRING 2023 42

ORDERED MULTICAST PATTERN

CORNELL CS4414 - SPRING 2023 43

Sender thread(s) Worker threads

Event A

ORDERED MULTICAST PATTERN

CORNELL CS4414 - SPRING 2023 44

Sender thread(s) Worker threads

Event A

Event B

Race condition: Danger is that
one thread could see B before
A, but others see A before B.

ORDERED MULTICAST PATTERN

CORNELL CS4414 - SPRING 2023 45

Sender thread(s) Worker threads

Event A

Event B

Race condition: Danger is that
one thread could see B before
A, but others see A before B.

ORDERED MULTICAST PATTERN

CORNELL CS4414 - SPRING 2023 46

Sender thread(s) Worker threads

Event A

Event B

An ordered multicast pattern implements a barrier that protects us
against ordering inconsistencies. There are many ways to build the
barrier. The pattern focuses on the behavior, not the implementation.

ORDERED MULTICAST WITH REPLIES

In this model, we start with an ordered multicast, but then the leader
for a given request awaits replies by supplying a reply queue.

Often, this uses a std::future in C++: a kind of object that will have
its value filled in “later”.

The leader makes n requests, then collects n corresponding replies.

CORNELL CS4414 - SPRING 2023 47

ORDERED MULTICAST PATTERN

CORNELL CS4414 - SPRING 2023 48

Sender thread(s) Worker threads

Event A

Event B

With replies, workers can send results back to the sender threads.

ALL-REDUCE PATTERN: IMPORTANT IN ML.

This pattern focuses on (key,value) pairs.

It assumes that there is a large (key,value) data set divided so
that worker k has the k’th shard of the data set.
 For example, with integer keys, perhaps (key % n) == k
 With arbitrary objects, you can use the built-in C++ “hash” method.

CORNELL CS4414 - SPRING 2023 49

ALL-REDUCE PATTERN: SHARDED DATA SET

CORNELL CS4414 - SPRING 2023 50

Leader Worker threads

Shard A Shard B Shard C

ALL-REDUCE: MAP STEP

The leader maps some task over the n workers. This can be
done in any way that makes sense for the application.

Each worker performs its share of the work by applying the
requested function to the data in its shard.

When finished, each worker will have a list of new (key,value)
pairs as its share of the result.

CORNELL CS4414 - SPRING 2023 51

ALL-REDUCE PATTERN: MAP (FIRST STEP)

CORNELL CS4414 - SPRING 2023 52

Leader Worker threads

Shard A Shard B Shard C

ALL-REDUCE PATTERN: MAP (FIRST STEP)

CORNELL CS4414 - SPRING 2023 53

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

ALL-REDUCE PATTERN: SHUFFLE

CORNELL CS4414 - SPRING 2023 54

Leader Worker threads

Shard A Shard B Shard C

Partial Result A Partial Result B Partial Result C

ALL-REDUCE PATTERN: SHUFFLE

CORNELL CS4414 - SPRING 2023 55

Leader Worker threads

Shard A Shard B Shard C

Partial Result A

Partial Result B

Partial Result C

Partial Result A

Partial Result B

Partial Result C

Partial Result A

Partial Result B

Partial Result C

ALL-REDUCE PATTERN: SHUFFLE

CORNELL CS4414 - SPRING 2023 56

Leader Worker threads

Shard A Shard B Shard C

Reduced Result Reduced Result
Reduced Result

With AllReduce, at the end of the pattern all participants
have identical “replicas” of the reduced result. The map
step is usually the slow one, and reducing is usually fast

EXAMPLE: MAP STEP RESULTS ARE VECTORS OF INTS.
REDUCE MIGHT SUM THE INTEGERS

Ken Birman (ken@cs.cornell.edu). Confidential, do not share. All rights reserved. 57

MAP-REDUCE IS AN EVEN MORE COMPLEX
PATTERN!
With Map-Reduce, each worker ends up with a distinct share of the
results. Data is “spread out” at the start and at the end. Useful if
the final result would be too big to hold on a single computer.

Instead of a set of all-to-all broadcasts, MapReduce uses point-to-
point messages: worker1 sends data intended for worker2 only to
worker2, etc.

We won’t show this on a slide, but hopefully you get the idea

CORNELL CS4414 - SPRING 2023 58

GOALS OF THESE “COLLECTIVE
COMMUNICATION” (CCL) PATTERNS?
Use all the NUMA cores.

Keep workers busy on independent shares of some data set, or
doing independent tasks. Ideally, there is no need for locking
because they use distinct data, or only read shared data.

Tasks communicate through std::list or bounded buffers

CORNELL CS4414 - SPRING 2023 59

SUMMARY (1)

We are trying to work in stylized, familiar ways. Other developers
who see your code will recognize the patterns.

These patterns aim for concurrent computing and sharing with as
few locks as possible, to minimize overheads yet ensure correctness.

CORNELL CS4414 - SPRING 2023 60

SUMMARY (2)

We illustrated use of software design patterns as conceptual tools
(abstractions) to promote standard ways of building complex software
systems.

Common coordination patterns include: producer-consumer, leader-
worker, ordered multicast, all-reduce, other CCL library packages.

Each has a simple, elegant pattern. Implementations are complex… but
we think about the pattern, not the way it was implemented!

CORNELL CS4414 - SPRING 2023 61

	Coordination Patterns
	Idea Map For Today
	Without coordination, many systems malfunction
	What is a coordination pattern?
	Producer – consumer Pattern
	Analogy: Software design patterns
	Modularity for complex, threaded programs
	Some examples.
	What exactly does “Modular” mean?
	Choices jump out at us…
	More examples
	More examples
	Software design patterns
	Example: The Object visitor pattern
	Reminder: Interfaces
	Example of how you might use visitor
	How to think about the visitor idea
	Visitor pattern use cases
	Key elements of this pattern
	Key elements of this pattern
	Why give this pattern a special name and think of it as a standard?
	Why is this such a big deal?
	Factory pattern
	Why a factory is useful
	Why a factory is useful
	Templates are often used to implement modern C++ design patterns
	Summary: Why standard software engineering patterns help
	Synchronization patterns
	Synchronization patterns
	Leader / Workers pattern
	Leader / Workers pattern
	Leader / Workers pattern
	Leader / workers pattern
	Pool of tasks
	Dynamic Task pools
	Example: Logistic Regression
	Barrier synchronization
	Building a barrier
	Building a barrier
	Building a barrier
	Building a barrier
	Ordered Multicast pattern
	Ordered Multicast pattern
	Ordered Multicast pattern
	Ordered Multicast pattern
	Ordered Multicast pattern
	Ordered Multicast with Replies
	Ordered Multicast pattern
	All-reduce pattern: important in ML.�
	All-Reduce pattern: Sharded data set
	All-Reduce: Map step
	All-Reduce pattern: Map (first step)
	All-Reduce pattern: Map (first step)
	All-Reduce pattern: Shuffle
	All-Reduce pattern: Shuffle
	All-Reduce pattern: Shuffle
	Example: Map Step results are vectors of ints. Reduce might sum the integers
	Map-reduce is An even more complex pattern!
	Goals of these “Collective Communication” (CCL) patterns?
	Summary (1)
	Summary (2)

