
DEADLOCKS, LIVELOCKS, AND HOW TO
AVOID THEM

Professor Ken Birman
CS4414 Lecture 17

CORNELL CS4414 - SPRING 2023 1

IDEA MAP FOR TODAY’S LECTURE

Today we focus on deadlocks and livelocks.

CORNELL CS4414 - SPRING 2023 2

Lightweight vs. Heavyweight

Thread “context”

C++ mutex objects. Atomic data types.

Reminder: Thread Concept

Deadlocks and Livelocks

The monitor pattern in C++

Problems monitors solve (and problems they don’t solve)

DEADLOCK: UNDERSTANDING

Deadlock arises in situations where we have multiple threads
that share some form of protected object or objects.

For simplicity, A and B share X and Y.

Now suppose that A is holding a lock on X, and B has a lock on
Y. A tries to lock Y, and B tries to lock X. Both wait, forever!

CORNELL CS4414 - SPRING 2023 3

MORE EXAMPLES

We only have one object, X.

A locks X, but due to a caught exception, exits the lock scope.
Because A didn’t use scoped_lock, the lock isn’t released.

Now B tries to lock X and waits. Because A no longer realizes it
holds the lock, this will persist forever.

CORNELL CS4414 - SPRING 2023 4

MORE EXAMPLES

We only have some critical section

A locks it, but now needs to wait for some condition. The
developer didn’t use the monitor pattern, and instead drops the
lock and then waits on some other form of mutex

But B ran as soon as the lock was released, and by the time A
waits, the condition A was waiting for is already true.

CORNELL CS4414 - SPRING 2023 5

ACQUIRING A MUTEX “TWICE”

Suppose that A is in a recursive algorithm, and the same thread
attempts to lock mutex X more than once. The recursion would
also unlock it the same number of times.

This is possible with a C++ “recursive_mutex” object.

But the standard C++ mutex is not recursive.

CORNELL CS4414 - SPRING 2023 6

WHAT IF YOU TRY TO RECURSIVELY LOCK A
NON-RECURSIVE MUTEX?
The resulting behavior is not defined.

On some platforms, this will deadlock silently. A waits for A!

On others, you get an exception, “Deadlock would result.”

CORNELL CS4414 - SPRING 2023 7

MORE EXAMPLES

A and B lock X and Y, but not in the same order.

Sometimes this can cause a deadlock… other times they
manage to get away with it.

Examples on next slide.

CORNELL CS4414 - SPRING 2023 8

AS A TIMELINE PICTURE THE GOOD CASE

In this run, A and B got lucky. It was a race, but A won and got
both locks, finished what it was doing, then released them.

B then runs, gets both locks, then releases them too.
CORNELL CS4414 - SPRING 2023 9

A: lock X A:lock Y A finished, releases locks B: lock Y B: lock X B finished, releases locks

AS A TIMELINE PICTURE: THE DEADLOCK

Trouble! Here, B grabbed the lock on Y while A was doing
other stuff (but holding a lock on X). Now B wants a lock on X
and A wants a lock on Y.

They get stuck: a deadlock!
CORNELL CS4414 - SPRING 2023 10

A: lock X B: lock Y B: lock X A: lock Y

COMMON HACK – BUT A MISTAKE!

The developer noticed the deadlock pattern but did not
understand the issue.

C++ lock primitives have optional “timeout” arguments. So the
developer decided to add a “random backoff” feature:
 When locking an object, wait t milliseconds.
 Initially, t=0 but after a timeout, change to a random value [0..999]
 Then retry. The idea: sooner or later things should work…

CORNELL CS4414 - SPRING 2023 11

WHAT DOES THIS GIVE US?

Now A locks X (and holds the lock), and B locks Y

A tries to lock Y, times out, retries… forever

B tries to lock X, times out, retries… forever

They aren’t “waiting” yet they actually are waiting!

CORNELL CS4414 - SPRING 2023 12

BETTER: LET THE PROGRAM GET INTO A
DEADLOCK, THEN DEBUG THE ISSUE
Without knowing about how mutex is implemented you can’t tell
which thread is holding a lock.

But gdb can show you!

It can report the
lightweight process “id”
currently holding a lock

CORNELL CS4414 - SPRING 2023 13

C++ - Is it possible to determine the
thread holding a mutex? - Stack Overflow

LWP is a form of unique pthread id. The same
post explains how to find the corresponding thread

https://stackoverflow.com/questions/3483094/is-it-possible-to-determine-the-thread-holding-a-mutex
https://stackoverflow.com/questions/3483094/is-it-possible-to-determine-the-thread-holding-a-mutex

DEADLOCK AND LIVELOCK DEFINITIONS

We say that a system is in a deadlocked state if one or more
threads will wait indefinitely (for a lock that should have been
released).

Non-example: A is waiting for input from the console. But Alice
doesn’t type anything.
Non-example: A lock is used to signal “a cupcake is ready”, but
we have run out of sugar and none can be baked.

CORNELL CS4414 - SPRING 2023 14

NECESSARY AND SUFFICIENT CONDITIONS
FOR DEADLOCK

1. Mutual exclusion: The system has resources protected by locks
2. Non-shareable resources: while A holds the lock, B waits.
3. No preemption: there is no way for B to “seize the lock” from A.
4. Cyclic waiting: A waits for B, B waits for A (a “circular” pattern)

With recursion using non-recursive locks, A could deadlock “by itself”

CORNELL CS4414 - SPRING 2023 15

CONDITIONS FOR LIVELOCK

A livelock is really the same as a deadlock, except that the
threads or processes have some way to “spin”.

As a result, instead of pausing, one or more may be spin-waiting.

We can define “inability to enter the critical section” as a wait, in
which case the four necessary and sufficient conditions apply.

CORNELL CS4414 - SPRING 2023 16

C++ AND LINUX ARE FULL OF RISKS!

If you think about it, you can find hundreds of ways that Linux
could potentially be at risk of deadlocks!

If you code with threads in C++ you run that risk too!

The developers of Linux designed the system to be free of
deadlock. You can do so in your applications too. But it takes
conscious though and a careful design.

CORNELL CS4414 - SPRING 2023 17

HOW TO AVOID DEADLOCKS?

Acquire locks in a fixed order that every thread respects. This rule
implies that condition 4 (cyclic waiting) cannot arise.

CORNELL CS4414 - SPRING 2023 18

HOW TO AVOID DEADLOCKS?

Acquire locks in a fixed order that every thread respects. This rule
implies that condition 4 (cyclic waiting) cannot arise.

Cool fact: std::scoped_lock will do this automatically if you list
multiple mutexes in a single call.

But you do need to be able to list all the mutexes you might need.

CORNELL CS4414 - SPRING 2023 19

HOW TO AVOID DEADLOCKS?

Or, do it by hand but think about the pattern

Example: Recall A and B with X and Y. Use alphabetic ordering
 We had A holding a lock on X and requesting a lock on Y:
 if our rule says lock X before Y, this is legal and A must wait.
 Meanwhile B held a lock on Y. Given our rule, B is not allowed
 to request a lock on X at this point.
 Nothing will check your logic! But if you code this correctly, it works

CORNELL CS4414 - SPRING 2023 20

AS A TIMELINE PICTURE

B shouldn’t be trying to try to lock X while still
holding a lock on Y,if you are using an
ordered locking rule.

X is alphabetically smaller than Y, and B
locked Y earlier. But C++ won’t will throw an
exception here. Your code didn’t follow the
rule… and nothing was checking

CORNELL CS4414 - SPRING 2023 21

A: lock X B: lock Y A: lock Y B: lock X

TRUE THOUGHT PROBLEM

Ken was on sabbatical in Paris in 1995-1996

There are two traffic circles in
France in which priority favors
allowing cars to enter the circle over exit.

Deadlock occurs! Would “priority to the left” have the same risk?

CORNELL CS4414 - SPRING 2023 22

We’ll use arrows to represent
desired paths of individual vehicles

VISUALIZING THE PRIORITE-A-DROITE CYCLE

Many streets. Traffic flows in counter-clockwise direction

Streets are mostly two-way

Core problem: some cars just want to leave, while others
continue around. But any entering car gets to go first

CORNELL CS4414 - SPRING 2023 23

UNDERSTANDING THIS IN
TERMS OF LOCK CYCLES
A car in the circle holds a form of “lock” on the space it occupies. If
car B allows car A to pass in front of it, this is like a lock-wait

When entering car C yields to car B which is behind car A, if A can
always leave there is no cycle… and no deadlock.

If a car in the circle must wait for a car entering, but the entering car
has no space to enter (and hence waits for a car already in the
circle), we do get a cycle… and a deadlock!

CORNELL CS4414 - SPRING 2023 24

PRIORITY TO THE LEFT IS THE MODERN RULE

Most of the world uses the priority-to-the-left rule.

For a traffic circle, this means cars in the circle have priority over
cars wanting to enter. “Drains” traffic out.

(BTW, in addition to great food, Belgium
has priorite-a-droite… good to know!)

CORNELL CS4414 - SPRING 2023 25

PRIORITY TO THE LEFT IS THE MODERN RULE

Most of the world uses the priority-to-the-left rule.

For a traffic circle, this means cars in the circle have priority over
cars wanting to enter. “Drains” traffic out.

CORNELL CS4414 - SPRING 2023 26

IN BELGIUM, AU C ON T R A IR E …

Everyone knows that Belgium has great food and beers

But… Belgium also has priorite-a-droite…
 Nobody really notices deadlock situations because Belgium
 has no big traffic circles similar to the Place Etoile or Place
 Victor Hugo in Paris.
 On the other hand, there are road intersections with no
 stop signs or traffic lights, all over the whole country…

CORNELL CS4414 - SPRING 2023 27

IN BELGIUM, AU C ON T R A IR E …

Everyone knows that Belgium has great food and beers

But… Belgium also has priorite-a-droite…
 Nobody really notices deadlock situations because Belgium
 has no big traffic circles similar to the Place Etoile or Place
 Victor Hugo in Paris.
 On the other hand, there are road intersections with no
 stop signs or traffic lights, all over the whole country.

CORNELL CS4414 - SPRING 2023 28

BACK ON TOPIC. SO… USE ORDERED
LOCKING! BUT IT CAN BE IMPRACTICAL
There are many applications that learn what they must lock one
item at a time, in some order they cannot predict.

So in such a situation, B didn’t know it would need a lock on X at
the time it locked Z.

… now it is too late!

CORNELL CS4414 - SPRING 2023 29

EXAMPLE: UNPREDICTABLE LOCK ORDER

For example, this could arise in a for loop. Maybe B is scanning
a std::list<Species*>, and needs a lock on each Species.

The std::list isn’t sorted by Species.name. The lock rule requires
locks in Species-name sort order. B locks Fuzzy Tribble and
Policle but now can’t lock Ballard’s Hooting Crane

CORNELL CS4414 - SPRING 2023 30

Fuzzy
Tribble Policle

Darwin’s
Tortle

WHAT IF IT TRIES?

This is a rule you would impose on yourself

If you don’t respect your own design, that would be a bug in
your code. C++ itself won’t enforce this rule.

It definitely is possible to “wrap” locks in a way that would track
locking and detect cyclic wait, but this isn’t standard in C++

CORNELL CS4414 - SPRING 2023 31

… EVEN SO, ORDERED LOCKING IS USEFUL

When you actually can impose an order and respect the rule, it is
a very simple and convenient way to avoid deadlock.

Ordered locking is very common inside the Linux kernel. It has a
cost (an application may need to sort a list of items, for example,
before locking all of them), but when feasible, it works.

CORNELL CS4414 - SPRING 2023 32

TIMER BASED SOLUTIONS

Sometimes it is too complicated to implement ordered locking.

Many programs just employ a timeout.

If B is running and tries to get a lock, but a timeout occurs, B
aborts (releasing all its locks) and restarts.

CORNELL CS4414 - SPRING 2023 33

BACKING OUT AND RETRYING

For this purpose, B would employ “try_lock”.

This is a feature that acquires a lock if possible within some
amount of time, but then gives up.

If B gets lucky, it is able to lock Y, then X, and no deadlock
arises. But if the lock on Y fails, B must unlock X.

CORNELL CS4414 - SPRING 2023 34

Backout can be costly

CONCEPT: ABORT AND RETRY

We say that a computation has “aborted” if it has a way to
undo some of the work it has done.

For example, B could be executing, lock Y, then attempt to lock
X. The try_lock fails, so B releases the lock on X and throws
away the temporary data it created – it “rolls back”. Then it
can retry, but get a lock on X first. Hopefully this will succeed.

CORNELL CS4414 - SPRING 2023 35

DOES THIS WORK?

Many database systems use abort/retry this way.

Assuming that the conditions giving rise to deadlocks are very
rare, the odds are that on retry B will be successful.

But if deadlocks become common, we end up with a livelock. That
was what we showed you on slides 8, 9

CORNELL CS4414 - SPRING 2023 36

PREEMPTIVE SOLUTION (“WOUND-WAIT”)

This method requires some way for the system to detect a
deadlock if one arises, and a way for threads to abort.

When A and B start executing, each notes its start time.

Rule: in a deadlock, the older thread wins. So if A was first, A
gets to lock Y and B aborts. If B was older, A aborts.

CORNELL CS4414 - SPRING 2023 37

DETECTING DEADLOCKS

Clearly, we gain many options if a system has a way to detect
deadlocks. Does C++ support this?

… you might think so, given the “deadlock would arise”
exception for recursive locking. But in fact this is done just by
tracking the thread-id for the thread holding a mutex.

CORNELL CS4414 - SPRING 2023 38

HOW TO BUILD A DEADLOCK DETECTOR

We wrap every locking operation with a method that builds a
graph of which thread is waiting for which other thread.

For example, if A tries to lock Y, but B is holding that lock, we
add a node for A, a node for B, and an A → edge.

If a thread is waiting for long enough, run “cycle detection”.

CORNELL CS4414 - SPRING 2023 39

CYCLE DETECTION ALGORITHMS

Run the depth-first search algorithm.

Back-edges imply a cycle; success with no back-edges implies
that the graph is cycle-free, hence there is no deadlock.

Complexity: V+E, where V is the number of threads (nodes) and
E is the number of wait-edges.

CORNELL CS4414 - SPRING 2023 40

A B

PRIORITY INVERSIONS

In some systems, threads are given different priorities to run.
 Urgent: The thread should be scheduled as soon as possible.
 Normal: The usual scheduling policy is fine.
 Low: Schedule only when there is nothing else that needs to run.

A priority inversion occurs if a higher priority thread is waiting for a lower
priority thread.

Deadlock can now arise if there is a steady workload of high priority tasks, so
that the lower priority thread doesn’t get a chance to run.

CORNELL CS4414 - SPRING 2023 41

HOW TO DETECT THIS SORT OF PROBLEM

If we create a deadlock detector, we can extend it do handle
priority-inversion detection!

For each mutex, track the priority of any thread that accesses it.

If we ever see a mutex that is accessed by a high and a low
priority thread, a risk of priority inversion arises!

CORNELL CS4414 - SPRING 2023 42

WHAT TO DO ABOUT IT?

One option is to temporarily change the priority of the lower
priority thread.

Suppose that A holds a mutex on X.

B, higher priority than A, wants a lock on X. We can “bump” A
to higher priority temporarily, then restore A to lower priority
when it releases the lock on X.

CORNELL CS4414 - SPRING 2023 43

NONE OF THESE IS CHEAP…

Recall our discussion of C++ versus Java and Python.

These methods of watching for cycles or priority inversions,
possibly forcing threads to abort, rollback and retry, etc, are all
examples of runtime mechanisms that can be very costly!

If you have no choice, then you use them. But don’t be naïve
about how expensive they can become!

CORNELL CS4414 - SPRING 2023 44

JIM GRAY

Jim Gray, a Turing Award winner, was a big player in inventing
databases and “transactions”. He worked at Microsoft

Jim’s focus for much of his career was on making it easier to create
really big databases and to access them from programming
languages like C++ (or C#, Java, Python, whatever)

CORNELL CS4414 - SPRING 2023 45

JIM GRAY’S STUDY

In the 1990’s, databases were used for storing all forms of data

By the early 2000’s, they became extremely big and heavily
loaded. People began to move them to NUMA machines and to
use lots of threads.

Surprisingly, they slowed down!

CORNELL CS4414 - SPRING 2023 46

JIM TRACKED DOWN THE CAUSE

It turned out that with more and more load on the database server,
hence lots of threads, the database locking algorithm was
discovering a lot of deadlocks.

Running the cycle detector, aborting all of those waiting threads,
rolling back and then retrying – it all added up to huge overheads!

Jim showed that once this occurred, his databases slowed down

CORNELL CS4414 - SPRING 2023 47

THE “FULL STORY”

He found that if you have a system with n servers (or using n
cores), and the system is trying to process t “simultaneous”
transactions (transactions), it could slow down as

 O(n3 t5)

CORNELL CS4414 - SPRING 2023 48

You used cores or servers to have your system
 handle more concurrent threads or transactions

… but it slows down, dramatically!

… NOT WHAT OWNERS EXPECTED!

People who buy a NUMA machine and run a program with more
threads want more performance, not less!

Also, the situation Jim identified didn’t arise instantly. It only
showed up under heavy load. This made it hard to debug…
 A Heisen-performance-bug!
 Very bad news… Hard to find, impossible to fix!

CORNELL CS4414 - SPRING 2023 49

WHAT DID JIM RECOMMEND?

He found ways to slice his big data sets into n distinct, independent
chunks. He ran the n databases separately! The rate of abort/retry
drops by a factor of n3

In fact, this is a good rule of thumb: try to design your program so
that as few data structures as possible are accessed by multiple
threads. For example, Ken’s word-count did this.

With one thread per data structure, no locking is needed!

CORNELL CS4414 - SPRING 2023 50

SUMMARY

Deadlock is a risk when we have concurrent tasks (threads or
processes) that share resources and use locking.

There are simple ways to avoid deadlock, but they aren’t
always practical. Ordered locking is a great choice, if feasible.

Complex options exist, but they can have high overheads.

CORNELL CS4414 - SPRING 2023 51

SUMMARY

Livelock is a form of deadlock in which threads or processes are
active but no progress is occurring.

Often associated with some form of “busy wait” loop.

Deadlock avoidance mechanisms often can prevent livelocks, too

CORNELL CS4414 - SPRING 2023 52

	Deadlocks, Livelocks, and how to avoid them
	Idea Map For today’s lecture
	Deadlock: Understanding
	More examples
	More examples
	Acquiring a Mutex “twice”
	What if you try to recursively lock a non-recursive mutex?
	More Examples
	As a timeline picture The good case
	As a timeline picture: The deadlock
	Common hack – but a mistake!
	What does this give us?
	Better: Let the program get into a deadlock, then debug the issue
	Deadlock and Livelock Definitions
	Necessary and sufficient conditions for deadlock
	Conditions for Livelock
	C++ and Linux are full of risks!
	How to avoid deadlocks?
	How to avoid deadlocks?
	How to avoid deadlocks?
	As a timeline picture
	True thought problem
	Visualizing the priorite-a-droite cycle
	Understanding this in �terms of lock cycles
	Priority to the left is the modern rule
	Priority to the left is the modern rule
	In Belgium, au contraire…
	In Belgium, au contraire…
	Back on topic. So… use Ordered locking! But it can be impractical
	ExaMPLE: Unpredictable lock order
	What if it tries?
	… Even so, Ordered Locking is useful
	Timer based solutions
	Backing out and retrying
	Concept: Abort and Retry
	Does this work?
	Preemptive solution (“Wound-wait”)
	Detecting deadlocks
	How to build a deadlock detector
	Cycle detection algorithms
	Priority inversions
	How to detect this sort of problem
	What to do about it?
	None of these is cheap…
	Jim Gray
	Jim Gray’s study
	Jim tracked down the cause
	The “full story”
	… not what owners expected!
	What did Jim recommend?
	Summary
	Summary

