
MONITOR PATTERN Professor Ken Birman
CS4414 Lecture 16

CORNELL CS4414 - SPRING 2023 1

IDEA MAP FOR TODAY

Today we focus on monitors.

CORNELL CS4414 - SPRING 2023 2

Lightweight vs. Heavyweight

Thread “context”

C++ mutex objects. Atomic data types.

Reminder: Thread Concept

Deadlocks and Livelocks

The monitor pattern in C++

Problems monitors solve (and problems they don’t solve)

BOUNDED BUFFER: THE ABSTRACTION IS OF A RING.
THE IMPLEMENTATION IS A FIXED SIZED ARRAY

We take an array of some fixed size, LEN, and think of it as a
ring. The k’th item is at location (k % LEN). Here, LEN = 8

CORNELL CS4414 - SPRING 2023 3

nfree =3
free_ptr = 15

nfull =5
next_item = 10

15 % 8 = 7

10 % 8 = 2

Producers write
to the end of the

full section

Consumers read
from the head of
the full section

0 1 2 3 4 5 6 7
free free free

Item
10

Item
11

Item
12

Item
13

Item
14

BOUNDED BUFFER: THE ABSTRACTION IS OF A RING.
THE IMPLEMENTATION IS A FIXED SIZED ARRAY

Now, wrap this into a circle, with cell 0 next to cell 7. No other
change is made – the remainder of the figure is identical.

CORNELL CS4414 - SPRING 2023 4

nfree =3
free_ptr = 15

nfull =5
next_item = 10

15 % 8 = 7

10 % 8 = 2

free

free

Item
11

Item
12

Item
13

Item
14

free

Item
10

0

1

2

3
4

5

6

7Producers write
to the end of the

full section

Consumers read
from the head of
the full section

A PRODUCER OR CONSUMER WAITS IF NEEDED

Producer:

void produce(const Foo& obj)
{

 if(nfull == LEN) wait;
 buffer[free_ptr++ % LEN] = obj;
 ++nfull;
 - - nempty;
}

Consumer:

Foo consume()
{

 if(nfull == 0) wait;
 ++nempty;
 - - nfull;
 return buffer[next_item++ % LEN];
}

CORNELL CS4414 - SPRING 2023 5

As written, this code is unsafe… we can’t fix it just by adding atomics or locks!

A PRODUCER OR CONSUMER WAITS IF NEEDED

Producer:

void produce(const Foo& obj)
{
 std::scoped_lock plock(mtx);
 if(nfull == LEN) wait;
 buffer[free_ptr++ % LEN] = obj;
 ++nfull;
 - - nempty;
}

Consumer:

Foo consume()
{
 std::scoped_lock clock(mtx);
 if(nfull == 0) wait;
 ++nempty;
 - - nfull;
 return buffer[next_item++ % LEN];
}

CORNELL CS4414 - SPRING 2023 6

Now safe… but lacks a way to implement “wait”

std::mutex mtx;

WHY ISN’T IT TRIVIAL TO IMPLEMENT WAIT?

While holding one lock, a thread can’t use locking to wait for
some condition to hold: nobody could “signal” for it to wake up
because no other thread can acquire the lock

But if we release the locks on the critical section, “anything” can
happen! The condition leading to wanting to wait might vanish.

CORNELL CS4414 - SPRING 2023 7

…
std::scoped_lock plock(mtx);
if(nfull == LEN) { release lock; wait; reacquire lock; }
… Right here, before wait, context switch could occur

WITH UNIQUE_LOCK, THERE IS A WAY TO DO A WAIT.

Producer:

void produce(const Foo& obj)
{
 std::unique_lock plock(mtx);
 if(nfull == LEN) wait;
 buffer[free_ptr++ % LEN] = obj;
 ++nfull;
 - - nempty;
}

Consumer:

Foo consume()
{
 std:: unique_lock clock(mtx);
 if(nfull == 0) wait;
 ++nempty;
 - - nfull;
 return buffer[next_item++ % LEN];
}

CORNELL CS4414 - SPRING 2023 8

std::mutex mtx;

THE MONITOR PATTERN

Our example turns out to be a great fit to the monitor pattern.

A monitor combines protection of a critical section with
additional operations for waiting and for notification.

For each protected object, you will need a “mutex” object that
will be the associated lock.

CORNELL CS4414 - SPRING 2023 9

A MONITOR IS A “PATTERN”

It uses a unique_lock to protect a critical section. You designate
the mutex (and can even lock multiple mutexes atomically).

Monitor conditions are variables that a monitor can wait on:
 wait is used to wait. It also (atomically) releases the scoped_lock.
 wait_until and wait_for can also wait for a timed delay to elapse.
 notify_one wakes up a waiting thread… notify_all wakes up all waiting
 threads. If no thread is waiting, these are both no-ops.

CORNELL CS4414 - SPRING 2023 10

STD::SHARED_LOCK AND STD::UNIQUE_LOCK

We will discuss in a moment, but

 std::shared_lock is a form of read-lock. Multiple readers
 can acquire a shared_lock on the identical mutex.

 std::unique_lock is like std::scoped_lock: a form of write-lock.
 The difference is that std::scoped_lock is less costly but lacks
 a feature we need for monitors. std::unique_lock works for
 the monitor pattern. As for std::shared_lock, this is never used
 when implementing a monitor.

CORNELL CS4414 - SPRING 2023 11

SOLUTION TO THE BOUNDED BUFFER
PROBLEM USING A MONITOR PATTERN
We will need a mutex, plus two “condition variables”:

 std::mutex mtx;
 std::condition_variable not_empty;
 std::condition_variable not_full;

… our code will have a single critical section with two roles (one
to produce, one to consume), so we use one mutex.

CORNELL CS4414 - SPRING 2023 12

INITIALIZATION OF THE VARIABLES

First, we need our const int LEN, and int variables nfree, nfull,
free_ptr and next_item. Initially everything is free: nfree = LEN;

const int LEN = 8;
int nfree = LEN;
int nfull = 0;
int free_ptr = 0;
int next_item = 0;

CORNELL CS4414 - SPRING 2023 13

nfree =3
free_ptr = 15

nfull =5
next_item = 10

free

free

Item
11

Item
12

Item
13

Item
14

free

Item
10

0

1

2

3
4

5

6

7

INITIALIZATION OF THE VARIABLES

First, we need our const int LEN, and int variables nfree, nfull,
free_ptr and next_item. Initially everything is free: nfree = LEN;

const int LEN = 8;
int nfree = LEN;
int nfull = 0;
int free_ptr = 0;
int next_item = 0;

CORNELL CS4414 - SPRING 2023 14

nfree =3
free_ptr = 15

nfull =5
next_item = 10

free

free

Item
11

Item
12

Item
13

Item
14

free

Item
10

0

1

2

3
4

5

6

7

We don’t declare these as atomic or
volatile because we plan to only

access them only inside our monitor!

Only use those annotations for
“stand-alone” variables accessed

concurrently without locking

CODE TO PRODUCE AN ITEM

void produce(const Foo& obj)
{
 std::unique_lock plock(mtx);
 not_full.wait(plock, [&](){ return nfree != 0;});
 buffer[free_ptr++ % LEN] = obj;
 --nfree;
 ++nfull;
 not_empty.notify_one();
}

CORNELL CS4414 - SPRING 2023 15

CODE TO PRODUCE AN ITEM

void produce(const Foo& obj)
{
 std::unique_lock plock(mtx);
 not_full.wait(plock, [&](){ return nfree != 0;});
 buffer[free_ptr++ % LEN] = obj;
 --nfree;
 ++nfull;
 not_empty.notify_one();
}

CORNELL CS4414 - SPRING 2023 16

This lock is automatically held until
the end of the method, then

released. But it will be temporarily
released for the condition-variable

“wait” if needed, then automatically
reacquired

CODE TO PRODUCE AN ITEM

void produce(const Foo& obj)
{
 std::unique_lock plock(mtx);
 not_full.wait(plock, [&](){ return nfree != 0;});
 buffer[free_ptr++ % LEN] = obj;
 --nfree;
 ++nfull;
 not_empty.notify_one();
}

CORNELL CS4414 - SPRING 2023 17

CODE TO PRODUCE AN ITEM

void produce(const Foo& obj)
{
 std::unique_lock plock(mtx);
 not_full.wait(plock, [&](){ return nfree != 0;});
 buffer[free_ptr++ % LEN] = obj;
 --nfree;
 ++nfull;
 not_empty.notify_one();
}

CORNELL CS4414 - SPRING 2023 18

A condition variable implements wait in a
way that atomically puts this thread to

sleep and releases the lock. This
guarantees that if notify should wake A

up, A will “hear it”

When A does run, it will also
automatically reaquire the mutex lock.

CODE TO PRODUCE AN ITEM

void produce(const Foo& obj)
{
 std::unique_lock plock(mtx);
 not_full.wait(plock, [&](){ return nfree != 0;});
 buffer[free_ptr++ % LEN] = obj;
 --nfree;
 ++nfull;
 not_empty.notify_one();
}

CORNELL CS4414 - SPRING 2023 19

CODE TO PRODUCE AN ITEM

void produce(Foo obj)
{
 std::unique_lock plock(mtx);
 not_full.wait(plock, [&](){ return nfree != 0;});
 buffer[free_ptr++ % LEN] = obj;
 --nfree;
 ++nfull;
 not_empty.notify_one();
}

CORNELL CS4414 - SPRING 2023 20

The condition takes the form of a lambda
returning true or false. It checks “what you are

waiting for”, not “why you are waiting”.

CODE TO PRODUCE AN ITEM

void produce(const Foo& obj)
{
 std::unique_lock plock(mtx);
 not_full.wait(plock, [&](){ return nfree != 0;});
 buffer[free_ptr++ % LEN] = obj;
 --nfree;
 ++nfull;
 not_empty.notify_one();
}

CORNELL CS4414 - SPRING 2023 21

CODE TO PRODUCE AN ITEM

void produce(const Foo& obj)
{
 std::unique_lock plock(mtx);
 not_full.wait(plock, [&](){ return nfree != 0;});
 buffer[free_ptr++ % LEN] = obj;
 --nfree;
 ++nfull;
 not_empty.notify_one();
}

CORNELL CS4414 - SPRING 2023 22

We produced one item, so we only need to
wake up one of the waiting threads

CODE TO CONSUME AN ITEM
Foo consume()
{
 std::unique_lock clock(mtx);
 not_empty.wait(clock, [&]() { return nfull != 0; });
 ++nfree;
 --nfull;
 not_full.notify_one();
 return buffer[full_ptr++ % LEN];
}

CORNELL CS4414 - SPRING 2023 23

CODE TO CONSUME AN ITEM
Foo consume()
{
 std::unique_lock clock(mtx);
 not_empty.wait(clock, [&]() { return nfull != 0; });
 ++nfree;
 --nfull;
 not_full.notify_one();
 return buffer[full_ptr++ % LEN];
}

CORNELL CS4414 - SPRING 2023 24

The notify doesn’t need to be the last line of the
consume method – it still holds the mutex lock, so

nobody else can enter the critical section

CODE TO CONSUME AN ITEM
Foo consume()
{
 std::unique_lock clock(mtx);
 not_empty.wait(clock, [&]() { return nfull != 0; });
 ++nfree;
 --nfull;
 not_full.notify_one();
 return buffer[full_ptr++ % LEN];
}

CORNELL CS4414 - SPRING 2023 25

For the same reason, this return statement is safe:
C++ executes the expression used in this return

statement while still holding the lock.

CODE TO CONSUME AN ITEM
Foo consume()
{
 std::unique_lock clock(mtx);
 not_empty.wait(clock, [&]() { return nfull != 0; });
 ++nfree;
 --nfull;
 not_full.notify_one();
 return buffer[full_ptr++ % LEN];
}

CORNELL CS4414 - SPRING 2023 26

CODE TO CONSUME AN ITEM
Foo consume()
{
 std::unique_lock clock(mtx);
 not_empty.wait(clock, [&]() { return nfull != 0; });
 ++nfree;
 --nfull;
 not_full.notify_one();
 return buffer[full_ptr++ % LEN];
}

CORNELL CS4414 - SPRING 2023 27

This is where the scope is actually closed. It happens as
C++ performs the logic for actually returning the result
(the Foo item “computed” by the return statement). The

destructor for clock now runs and releases the lock

A SECOND EXAMPLE Readers and Writers

CORNELL CS4414 - SPRING 2023 28

RECALL THE RULE FOR SHARING A STD
LIBRARY DATA STRUCTURE
A shared data structure can support arbitrary numbers of
concurrent read-only accesses.

But an update (a “writer”) might cause the structure to change,
so updates must occur when no reads are active.

We also need fairness: reads should not starve updates

CORNELL CS4414 - SPRING 2023 29

RECALL THE RULE FOR SHARING A STD
LIBRARY DATA STRUCTURE
This can be solved using std::shared_lock and std::unique_lock:
std::shared_lock is a read lock and std::unique_lock is a write lock.

But the default implementation allows readers to starve writers. A
steady stream of readers would continuously acquire the shared
reader lock. No writer could ever get in!

We can do better… with a monitor where we control the policy
CORNELL CS4414 - SPRING 2023 30

EXPRESSED AS A MONITOR

void start_read()
{
 std::unique_lock srlock(mtx);
 want_rw.wait(srlock, [&]() { return ! ((active_writer || writers_waiting); });
 ++active_readers;
}

void end_read()
{
 std::unique_lock erlock(mtx);
 if(- -active_readers == 0)
 want_rw.notify_all();
}

CORNELL CS4414 - SPRING 2023 31

std::mutex mtx;
std::condition_variable want_rw;
int active_readers = 0, writers_waiting = 0;
bool active_writer = false; void start_write()

{
 std::unique_lock swlock(mtx);
 + +writers_waiting;
 want_rw.wait(swlock, [&]() { return !(active_writer || active_readers); });
 - -writers_waiting;
 active_writer = true;
}

void end_write()
{
 std::unique_lock ewlock(mtx);
 active_writer = false;
 want_rw.notify_all();
}

EXPRESSED AS A MONITOR

void start_read()
{
 std::unique_lock srlock(mtx);
 want_rw.wait(srlock [&]() { return ! ((active_writer || writers_waiting); });
 ++active_readers;
}

void end_read()
{
 std::unique_lock erlock(mtx);
 if(- -active_readers == 0)
 want_rw.notify_all();
}

CORNELL CS4414 - SPRING 2023 32

void start_write()
{
 std::unique_lock swlock(mtx);
 + +writers_waiting;
 want_rw.wait(swlock, [&]() { return !(active_writer || active_readers); });
 - -writers_waiting;
 active_writer = true;
}

void end_write()
{
 std::unique_lock ewlock(mtx);
 active_writer = false;
 want_rw.notify_all();
}

std::mutex mtx;
std::condition_variable want_rw;
int active_readers = 0, writers_waiting = 0;
bool active_writer = false;

EXPRESSED AS A MONITOR

CORNELL CS4414 - SPRING 2023 33

std::mutex mtx;
std::condition_variable want_rw;
int active_readers, writers_waiting;
bool active_writer; void start_write()

{
 std::unique_lock swlock(mtx);
 + +writers_waiting;
 want_rw.wait(swlock, [&]() { return !(active_writer || active_readers); });
 - -writers_waiting;
 active_writer = true;
}

void end_write()
{
 std::unique_lock ewlock(mtx);
 active_writer = false;
 want_rw.notify_all();
}

void start_read()
{
 std::unique_lock srlock(mtx);
 want_rw.wait(srlock, [&]() { return ! ((active_writer || writers_waiting); });
 ++active_readers;
}

void end_read()
{
 std::unique_lock erlock(mtx);
 if(- -active_readers == 0)
 want_rw.notify_all();
}

C++ interprets this as (writers_waiting > 0)

EXPRESSED AS A MONITOR

CORNELL CS4414 - SPRING 2023 34

std::mutex mtx;
std::condition_variable want_rw;
int active_readers, writers_waiting;
bool active_writer; void start_write()

{
 std::unique_lock swlock(mtx);
 + +writers_waiting;
 want_rw.wait(swlock, [&]() { return !(active_writer || active_readers); });
 - -writers_waiting;
 active_writer = true;
}

void end_write()
{
 std::unique_lock ewlock(mtx);
 active_writer = false;
 want_rw.notify_all();
}

void start_read()
{
 std::unique_lock srlock(mtx);
 want_rw.wait(srlock, [&]() { return ! ((active_writer || writers_waiting); });
 ++active_readers;
}

void end_read()
{
 std::unique_lock erlock(mtx);
 if(- -active_readers == 0)
 want_rw.notify_all();
}

“wait until there is no active writer and
there are no waiting writers”

… USING LAMBDAS

void start_read()
{
 std::unique_lock srlock(mtx);
 want_rw.wait(srlock, [&]() { return ! ((active_writer || writers_waiting); });
 ++active_readers;
}

void end_read()
{
 std::unique_lock erlock(mtx);
 if(- -active_readers == 0)
 want_rw.notify_all();
}

CORNELL CS4414 - SPRING 2023 35

std::mutex mtx;
std::condition_variable want_rw;
int active_readers, writers_waiting;
bool active_writer;

void start_write()
{
 std::unique_lock swlock(mtx);
 + +writers_waiting;
 want_rw.wait(swlock, [&]() { return !(active_writer || active_readers); });
 - -writers_waiting;
 active_writer = true;
}

void end_write()
{
 std::unique_lock ewlock(mtx);
 active_writer = false;
 want_rw.notify_all();
}

C++ interprets this as (active_readers > 0)

… USING LAMBDAS

void start_read()
{
 std::unique_lock srlock(mtx);
 want_rw.wait(srlock, [&]() { return ! ((active_writer || writers_waiting); });
 ++active_readers;
}

void end_read()
{
 std::unique_lock erlock(mtx);
 if(- -active_readers == 0)
 want_rw.notify_all();
}

CORNELL CS4414 - SPRING 2023 36

std::mutex mtx;
std::condition_variable want_rw;
int active_readers, writers_waiting;
bool active_writer;

void start_write()
{
 std::unique_lock swlock(mtx);
 + +writers_waiting;
 want_rw.wait(swlock, [&]() { return !(active_writer || active_readers); });
 - -writers_waiting;
 active_writer = true;
}

void end_write()
{
 std::unique_lock ewlock(mtx);
 active_writer = false;
 want_rw.notify_all();
}

“wait until there is no active writer and
there are no active readers”

COOL IDEA – YOU COULD EVEN OFFER IT AS
A PATTERN…

beAReader([](){ … some code to execute as a reader });

beAWriter([](){ … some code to execute as a writer });

CORNELL CS4414 - SPRING 2023 37

All beAReader would do is call start_read, then call the lambda,
then end_read. Same for beAWriter: call start_write, then the
lambda, then end_write.

A FEW THINGS TO NOTE
Monitor features
that matter when
coding with them

CORNELL CS4414 - SPRING 2023 38

OUR ULTIMATE VERSION OF READERS AND
WRITERS IS SIMPLE AND CORRECT.
But it gives waiting writers priority over waiting readers, so it
isn’t fair (an endless stream of writers would starve readers).

In effect, we are assuming that writing is less common than
reading. You can modify it to have the other bias easily (if
writers are common but readers are rare).

CORNELL CS4414 - SPRING 2023 39

OUR ULTIMATE VERSION OF READERS AND
WRITERS IS SIMPLE AND CORRECT.
But it gives waiting writers priority over waiting readers, so it
isn’t fair (an endless stream of writers would starve readers).

In effect, we are assuming that writing is less common than
reading. You can modify it to have the other bias easily (if
writers are common but readers are rare).

CORNELL CS4414 - SPRING 2023 40

void start_read()
{
 std::unique_lock srlock(mtx);
 want_rw.wait(srlock, [&]() { return ! ((active_writer || writers_waiting); });
 ++active_readers;
}

void end_read()
{
 std::unique_lock erlock(mtx);
 if(- -active_readers == 0)
 want_rw.notify_all();
}

Readers yield to writers, even if they are waiting

OUR ULTIMATE VERSION OF READERS AND
WRITERS IS SIMPLE AND CORRECT.
But it gives waiting writers priority over waiting readers, so it
isn’t fair (an endless stream of writers would starve readers).

In effect, we are assuming that writing is less common than
reading. You can modify it to have the other bias easily (if
writers are common but readers are rare).

CORNELL CS4414 - SPRING 2023 41

void start_write()
{
 std::unique_lock swlock(mtx);
 + +writers_waiting;
 want_rw.wait(swlock, [&]() { return !(active_writer || active_readers); });
 - -writers_waiting;
 active_writer = true;
}

void end_write()
{
 std::unique_lock ewlock(mtx);
 active_writer = false;
 want_rw.notify_all();
}

Writers don’t yield to waiting readers

NOTIFY_ALL VERSUS NOTIFY_ONE

notify_all wakes up every waiting thread. We used it here,
because sometimes the next thread to enter should be a reader
and sometimes a writer.

One can be fancy and use notify_one to try and make this code
more fair, but it isn’t easy to do because your solution would still
need to be correct with spurious wakeups.

CORNELL CS4414 - SPRING 2023 42

OUR ULTIMATE VERSION OF READERS AND
WRITERS IS SIMPLE AND CORRECT.
What we just saw:
 The readers wait even if there is a waiting writer. So if there
 is an active writer or a waiting writer, a reader pauses in
 start read.
 A writer only waits if there is an active writer or an active
 reader. If a writer wants to start writing and nobody is active
 it gets in before any reader would be able to start reading.
 This is what we mean by “prioritizes writers over readers”.

CORNELL CS4414 - SPRING 2023 43

IS PRIORITIZING WRITERS A GOOD IDEA?

If you expect a high rate of readers and a low rate of writers it
makes sense.

Presumably you want your application to always see updates as
soon as possible.

But if you have a very high rate of writes, readers starve.

CORNELL CS4414 - SPRING 2023 44

IN FACT, A SYMMETRIC VERSION IS FEASIBLE!

It is a bit more complicated and doesn’t fit on one slide

The basic idea is this: new readers will prioritize “switching” to a
writer, if one is waiting. But if an active writer calls end_write
and there is a reader waiting, let all the readers in before the
next writer can enter.

We won’t show it (but copilot would show you the code if asked).
CORNELL CS4414 - SPRING 2023 45

WARNING ABOUT “SPURIOUS WAKEUPS”

We do not recommend using the condition-variable wait method
without a lambda. It supports this, but your code would need to
use a while loop and retest the wait condition if you do that.

The reason? Wait can sometimes wake up even when notify was not
called. This is a documented feature but means you must always
recheck the condition. The lambda version of wait does so.

CORNELL CS4414 - SPRING 2023 46

DEBUGGING SOMEONE ELSE’S BUGGY
MONITOR CODE? CHECK FOR THIS FIRST!
Always check their condition-wait logic. Recall our start_write:

CORNELL CS4414 - SPRING 2023 47

void start_write()
{
 std::unique_lock swlock(mtx);
 + +writers_waiting;
 want_rw.wait(swlock, [&]() { return !(active_writer || active_readers); });
 - -writers_waiting;
 active_writer = true;
}

DEBUGGING SOMEONE ELSE’S BUGGY
MONITOR CODE? CHECK FOR THIS FIRST!
Old-fashioned version from CS4410 has a while loop:

CORNELL CS4414 - SPRING 2023 48

void start_write()
{
 std::unique_lock swlock(mtx);
 + +writers_waiting;
 while(active_writer || active_readers)
 want_write.wait(swlock || active_readers); });
 - -writers_waiting;
 active_writer = true;
}

DEBUGGING SOMEONE ELSE’S BUGGY
MONITOR CODE? CHECK FOR THIS FIRST!
Old-fashioned version from CS4410 has a while loop:

CORNELL CS4414 - SPRING 2023 49

void start_write()
{
 std::unique_lock swlock(mtx);
 + +writers_waiting;
 while(active_writer || active_readers)
 want_write.wait(swlock || active_readers); });
 - -writers_waiting;
 active_writer = true;
}

In the CS4410 version, there were two condition
variables, one for a waiting writer, one for a reader

DEBUGGING SOMEONE ELSE’S BUGGY
MONITOR CODE? CHECK FOR THIS FIRST!
In fact, if you really look at your old CS4410 notes you actually
might find this:

CORNELL CS4414 - SPRING 2023 50

void start_write()
{
 std::unique_lock swlock(mtx);
 + +writers_waiting;
 if(active_writer || active_readers)
 want_write.wait(swlock || active_readers); });
 - -writers_waiting;
 active_writer = true;
}

DEBUGGING SOMEONE ELSE’S BUGGY
MONITOR CODE? CHECK FOR THIS FIRST!
In fact, if you really look at your old CS4410 notes you actually
might find this:

CORNELL CS4414 - SPRING 2023 51

void start_write()
{
 std::unique_lock swlock(mtx);
 + +writers_waiting;
 if(active_writer || active_readers)
 want_write.wait(swlock || active_readers); });
 - -writers_waiting;
 active_writer = true;
}

This if statement is evaluated once. Then
perhaps we wait.

WOULD THIS BUG MATTER? YOU BET!

Our lambda version didn’t have a bug. Neither did the version
with the while-loop. The if version is ok, in C

But the if is a (surprisingly common) mistake in C++. People
don’t realize that wait might wake up even without a notify_one.

Consequence? A new writer starts when other threads are
still in the critical section, violating the std library policy!

CORNELL CS4414 - SPRING 2023 52

DEBUGGING SOMEONE ELSE’S BUGGY
MONITOR CODE? CHECK FOR THIS FIRST!
In fact, if you really look at your old CS4410 notes you actually
might find this:

CORNELL CS4414 - SPRING 2023 53

void start_write()
{
 std::unique_lock swlock(mtx);
 + +writers_waiting;
 if(active_writer || active_readers)
 want_write.wait(swlock || active_readers); });
 - -writers_waiting;
 active_writer = true;
}

This wait might wake up for the wrong
reason, not because notify_one was called

FAIRNESS, FREEDOM FROM STARVATION

Locking solutions for NUMA system map to atomic “test and set”:

This is random, hence “fair”, but not guaranteed to be fair.

CORNELL CS4414 - SPRING 2023 54

std::atomic_flag lock_something = ATOMIC_FLAG_INIT;

 while (lock_something.test_and_set()) {} // Threads loop waiting, here

 cout << “My thread is inside the critical section!” << endl;

 lock_stream.clear();

HOW COULD TEST_AND_SET BE UNFAIR?

On a NUMA machine, the mutex has to be near some core or in
DRAM. Suppose it gets allocated in the memory close to core 0.

Now suppose thread A is on core 0 competing with threads B
and C on cores 1 and 2. Due to NUMA effects (lecture 2), A
can access the mutex 5x faster than threads B and C!

So thread A will have an unfair advantage
CORNELL CS4414 - SPRING 2023 55

BASICALLY, WE COULD WORRY ABOUT
FAIRNESS, BUT DIDN’T IN THIS EXAMPLE
Our home-brew “lock implementation” was thus unfair.

The std::unique_lock implementation used in monitors tries to be
much more fair, but NUMA effects could still “defeat” it!

This is just something to be aware of. Ideally you would want all
your threads close to the mutex, or none of them close to it.

CORNELL CS4414 - SPRING 2023 56

KEEP LOCK BLOCKS SHORT

It can be tempting to just get a lock and then do a whole lot of
work while holding it.

But keep in mind that if you really needed the lock, some thread
may be waiting this whole time!

So… you’ll want to hold locks for as short a period as feasible.

CORNELL CS4414 - SPRING 2023 57

RESIST THE TEMPTATION TO RELEASE A LOCK
WHILE YOU STILL NEED IT!
Suppose threads A and B share:
 std::map<std::string, int> myMap;

Now, A executes:

Are both lines part of the critical section?

CORNELL CS4414 - SPRING 2023 58

auto item = myMap[some_city];
cout << “ City of “ << item.first << “, population = “ << item.second << endl;

HOW TO FIX THIS?

We can protect both lines with a scoped_lock:

CORNELL CS4414 - SPRING 2023 59

std::mutex mtx;
 ….
 {
 std::scoped_lock lock(mtx);
 auto item = myMap[some_city];
 cout << “ City of “ << item.first << “, population = “ << item.second << endl;
 }

… BUT THIS COULD BE SLOW

Holding a lock for long enough to format and print data will
take a long time.

Meanwhile, no thread can obtain this same lock.

CORNELL CS4414 - SPRING 2023 60

TYPICAL WORK-AROUND PEOPLE EXPLORE:
PRINT OUTSIDE THE SCOPE

CORNELL CS4414 - SPRING 2023 61

Tempting change:

… this a correct piece of code. But this item could change even
before it is printed.

std::mutex mtx;
 std::pair<std::string,int> item;
 {
 std::scoped_lock lock(mtx);
 item = myMap[some_city];
}
 cout << “ City of “ << item.first << “, population = “ << item.second << endl;

ONE IDEA: PRINT OUTSIDE THE SCOPE

CORNELL CS4414 - SPRING 2023 62

Tempting change:

This version is wrong! Can you see the error?

std::mutex mtx;
 std::pair<std::string,int> *item;
 {
 std::scoped_lock lock(mtx);
 item = &myMap[some_city];
}
 cout << “ City of “ << item→first << “, population = “ << item → second << endl;

Item might have been deleted by the
time we try to print it. Our pointer could
point to outer space!

BUT NOW THE PRINT STATEMENT HAS NO LOCK

No! This change is unsafe, for two reasons:
 Some thread could do something replace the std::pair that contains
 Ithaca with a different object. A would have a “stale” reference.
 Both std::map and std::pair are implemented in a non-thread-safe
 libraries. If any thread could do any updates, a reader must view the
 whole structure as a critical section!

CORNELL CS4414 - SPRING 2023 63

HOW DID FAST-WC HANDLE THIS?

In fast-wc, we implemented the code to never have concurrent
threads accessing the same std::map!

Any given map was only read or updated by a single thread.

This does assume that std::map has no globals that somehow
could be damaged by concurrent access to different maps, but
in fact the library does have that guarantee.

CORNELL CS4414 - SPRING 2023 64

ARE THERE OTHER WAYS TO HANDLE AN
ISSUE LIKE THIS?
A could safely make a copy of the item it wants to print, exit the lock
scope, then print from the copy. It could even generate a vector of
items to print “later”, which is a common way to log debug data.

We could use two levels of locking, one for the map itself, a second
for std::pair objects in the map.

We could add a way to “mark” an object as “in use by someone”
and write code to not modify such an object.

CORNELL CS4414 - SPRING 2023 65

BUT BE CAREFUL!

The more subtle your synchronization logic becomes, the harder
the code will be to maintain or even understand.

Simple, clear synchronization patterns have a benefit: anyone
can easily see what you are doing!

This often causes some tradeoffs between speed and clarity.

CORNELL CS4414 - SPRING 2023 66

SYNCHRONIZATION SUMMARY

atomic<t> for base types (bool, int, float), test-and-set… No need to
say “volatile” because the compiler infers that.

scoped_lock for most locking. Can lock multiple mutexes atomically.

monitor pattern: combines a unique_lock with condition variables to
offer protection as well as a wait and notify mechanism, easy to
reason about even for complex logic like reads/writers.

CORNELL CS4414 - SPRING 2023 67

	Monitor Pattern
	Idea Map For Today
	bounded buffer: The abstraction is of a ring. The implementation is a fixed sized array
	bounded buffer: The abstraction is of a ring. The implementation is a fixed sized array
	A producer or consumer waits if needed
	A producer or consumer waits if needed
	Why isn’t it trivial to implement wait?
	With unique_lock, there is a way to do a wait.
	The monitor pattern
	A monitor is a “pattern”
	Std::shared_lock and std::unique_lock
	Solution to the bounded buffer problem using a monitor pattern
	Initialization of the variables
	Initialization of the variables
	Code to produce an item
	Code to produce an item
	Code to produce an item
	Code to produce an item
	Code to produce an item
	Code to produce an item
	Code to produce an item
	Code to produce an item
	Code to consume an item
	Code to consume an item
	Code to consume an item
	Code to consume an item
	Code to consume an item
	a second example
	recall the rule for sharing a Std library data structure
	recall the rule for sharing a Std library data structure
	Expressed as a monitor
	Expressed as a monitor
	Expressed as a monitor
	Expressed as a monitor
	… using lambdas
	… using lambdas
	Cool idea – you could even offer it as a pattern…
	A few Things to note
	Our ultimate version of readers and writers Is simple and correct.
	Our ultimate version of readers and writers Is simple and correct.
	Our ultimate version of readers and writers Is simple and correct.
	Notify_all versus notify_one
	Our ultimate version of readers and writers Is simple and correct.
	Is prioritizing writers a good idea?
	In fact, a symmetric version is feasible!
	Warning about “spurious wakeups”
	Debugging someone else’s buggy monitor code? Check for this first!
	Debugging someone else’s buggy monitor code? Check for this first!
	Debugging someone else’s buggy monitor code? Check for this first!
	Debugging someone else’s buggy monitor code? Check for this first!
	Debugging someone else’s buggy monitor code? Check for this first!
	Would this bug matter? You bet!
	Debugging someone else’s buggy monitor code? Check for this first!
	Fairness, freedom from starvation
	How could test_and_set be unfair?
	Basically, we could worry about fairness, but didn’t in this example
	Keep lock blocks short
	Resist the temptation to release a lock while you still need it!
	How to fix this?
	… but this could be slow
	Typical work-around people explore: print outside the scope
	One idea: print outside the scope
	But now the print statement has no lock
	How did fast-wc handle this?
	Are there other ways to handle an issue like this?
	But be careful!
	Synchronization summary

