
SYNCHRONIZATION PRIMITIVES Professor Ken Birman
CS4414 Lecture 15

CORNELL CS4414 - SPRING 2023 1

IDEA MAP FOR MULTIPLE LECTURES!

Today: Focus on the danger of sharing without synchronization
and the hardware primitives we use to solve this.

CORNELL CS4414 - SPRING 2023 2

Lightweight vs. Heavyweight

Thread “context” and scheduling

C++ mutex objects. Atomic data types.
Reminder: Thread Concept

Race Conditions, Deadlocks,
Livelocks

IDEA MAP FOR TODAY’S LECTURE!

 Today: Focus on the danger of sharing without synchronization
 and the hardware/software primitives we can use to solve this.

 Issue we will be looking at: there are too many options, yet
 none of them really is “elegant” for reasoning about safety in
 a big program!

 Today we’ll see many options. The recommended answer
 (monitors) will be in the lectures next week.

CORNELL CS4414 - SPRING 2023 3

… WITH CONCURRENT THREADS, SOME
SHARING IS USUALLY NECESSARY
Suppose that threads A and B are sharing an integer counter.
What could go wrong?

We touched on this briefly in an early lecture. A and B both
simultaneously try to increment counter. But an increment occurs
in steps: load the variable (counter), add one, save it back.

… they conflict, and we “lose” one of the counting events.
CORNELL CS4414 - SPRING 2023 4

THREADS A AND B SHARE A COUNTER

Thread A:

counter++;

Thread B:

counter++;

CORNELL CS4414 - SPRING 2023 5

movq counter,%rax
addq $1,%rax
movq %rax,counter

movq counter,%rax
addq $1,%rax
movq %rax,counter

Either context switching or NUMA concurrency could
cause these instruction sequences to interleave!

EXAMPLE: COUNTER IS INITIALLY 16, AND
BOTH A AND B TRY TO INCREMENT IT.
The problem is that A and B
have their own private copies
of the counter in %rax

With pthreads, each has a private
set of registers: a private %rax

With lightweight threads, context switching saved A’s copy while B
ran, but then reloaded A’s context, which included %rax

CORNELL CS4414 - SPRING 2023 6

movq counter,%rax

addq $1,%rax
movq %rax,counter

movq counter,%rax
addq $1,%rax
movq %rax,counter

What A does

What B does

%rax
16

(push)
16
17
17

(pop)
17
17

THIS INTERLEAVING CAUSES A BUG!

If we increment 16 twice, the answer should be 18.

If the answer is shown as 17, all sorts of problems can result.

Worse, the schedule is unpredictable. This kind of bug could
come and go…

CORNELL CS4414 - SPRING 2023 7

STANDARD C++ LIBRARY GUARANTEE
Suppose you are using the C++ std library:

 No lock is needed when accessing different objects

 Methods of a single object can simultaneously be called by
 arbitrarily many read-only threads. No locks are needed.

 … But only a single active writer is permitted (this excludes
 other writers as well as new or already-active readers).

… You must protect against having multiple writers or a mix
of readers and writers concurrently accessing the same object.

CORNELL CS4414 - SPRING 2023 8

BOOST WARNING: READ DOCUMENTATION!

Some people love a library called Boost, which has many things
lacking in C++ std:: today. But the guarantees vary for different Boost
tools, which is one reason many companies are hesitant to use Boost

Some Boost libraries are “thread safe” meaning they implement their
own locking. That would be more than what std:: promises.

Some are like std::. And some just specify their own rules!

CORNELL CS4414 - SPRING 2023 9

BRUCE LINDSAY

A famous database researcher

Bruce coined the terms “Bohrbugs” and “Heisenbugs”

CORNELL CS4414 - SPRING 2023 10

praseodymium orthoscandate (PrScO3) crystal
zoomed in 100 million times

BRUCE LINDSAY

In a concurrent system, we have two
kinds of bugs to worry about

A Bohrbug is a well-defined, reproducible thing. We test and test,
find it, and crush it.

Concurrency can cause Heisenbugs… they are very hard to
reproduce. People often misunderstand them, and just make things
worse and worse by patching their code without fixing the root cause!

CORNELL CS4414 - SPRING 2023 11

CONCEPT: CRITICAL SECTION

A critical section is a block of code that accesses variables that are read
and updated. You must have two or more threads, at least one of them
doing an update (writing to a variable).

The block where A and B access the counter is a critical section. In this
example, both update the counter.

Reading constants or other forms of unchanging data is not an issue. And
you can safely have many simultaneous readers.

CORNELL CS4414 - SPRING 2023 12

WE NEED TO ENSURE THAT A AND B CAN’T BOTH
BE IN THE CRITICAL SECTION AT THE SAME TIME!

Basically, when A wants to increment counter, A goes into the
critical section… and locks the door.

Then it can change the counter safely.

If B wants to access counter, it has to wait until A unlocks the door.

CORNELL CS4414 - SPRING 2023 13

C++ ALLOWS US TO DO THIS.

std::mutex mtx;

void safe_inc(int& counter)
{

 std::scoped_lock lock(mtx);

 counter++;
}

CORNELL CS4414 - SPRING 2023 14

C++ ALLOWS US TO DO THIS.

std::mutex mtx;

void safe_inc(int& counter)
{

 std::scoped_lock lock(mtx);

 counter++; // A critical section!
}

CORNELL CS4414 - SPRING 2023 15

C++ ALLOWS US TO DO THIS.

std::mutex mtx;

void safe_inc(int& counter)
{

 std::scoped_lock lock(mtx);

 counter++; // A critical section!
}

CORNELL CS4414 - SPRING 2023 16

This is a C++ type!

C++ ALLOWS US TO DO THIS.

std::mutex mtx;

void safe_inc(int& counter)
{

 std::scoped_lock lock(mtx);

 counter++; // A critical section!
}

CORNELL CS4414 - SPRING 2023 17

This is a variable name!

C++ ALLOWS US TO DO THIS.

std::mutex mtx;

void safe_inc(int& counter)
{

 std::scoped_lock lock(mtx);

 counter++; // A critical section!
}

CORNELL CS4414 - SPRING 2023 18

The mutex is passed to the
scoped_lock constructor

HOW DOES SCOPED_LOCK WORK?

boolean mutex = 0;

while(test_and_set(mutex) == 1)

 /* just wait, looping */ ;

 … now I hold the lock!

 mutex = 0; /* release the lock */

CORNELL CS4414 - SPRING 2023 19

HOW DOES SCOPED_LOCK WORK?

In effect, keep trying to “be the winner” who sets mutex to 1.
 If “this try” flipped it from 0 to 1, my thread just got the lock
 If it was already 1, some other thread holds the lock.

The pattern is called spinning or busy waiting. As for the
test_and_set, in fact Intel offers an “atomic” test_and_set
instruction that will set a bit, but also test its old value. There is also
one called compare_and_swap.

CORNELL CS4414 - SPRING 2023 20

COMMON MISTAKE

Very easy to forget the variable name! This legal C++ yet not
all all what you intended 

If you make that mistake…
 C++ does run the constructor
 But then the new object immediately goes out of scope.
 Effect is to acquire but then instantly release the lock

CORNELL CS4414 - SPRING 2023 21

std::scoped_lock(mtx);std::scoped_lock lock(mtx);

MULTIPLE MUTEX VARIABLES

std::scoped_lock can acquire and release a list of mutex
variables in a single atomic action

This is a better choice than acquiring them one by one because it
cannot cause a deadlock, but we do not always know which
locks we will acquire.
 Common tricky case: while holding a lock, call a method that
 also needs a lock. Will look closely at this in lecture 17.

CORNELL CS4414 - SPRING 2023 22

RULE: SCOPED_LOCK

Your thread might pause when this line is reached.

Suppose counter is accessed in two places?

… use std::scoped_lock something(mtx) in both, with the same
mutex. “The mutex, not the variable name, determines which
threads will be blocked”.

CORNELL CS4414 - SPRING 2023 23

std::scoped_lock lock(mtx);

WHAT DO WE MEAN BY “AT TWO PLACES”?

Suppose counter is a global integer. But many .cpp files
declare it as an extern and access it.

 Is this one critical section or many?

 It feels like many critical sections (each such access is at risk)

 But we view them as a single critical section that is entered
 from many places. They must use the identical mutex.

CORNELL CS4414 - SPRING 2023 24

RULE: SCOPED_LOCK

When a thread “acquires” a lock on a mutex, it has sole control!

You have “locked the door”. Until the current code block exits,
you hold the lock and no other thread can acquire it!

Upon exiting the block, the lock is released (this works even if
you exit in a strange way, like throwing an exception)

CORNELL CS4414 - SPRING 2023 25

std::scoped_lock lock(mtx);

PEOPLE USED TO THINK LOCKS WERE THE
SOLUTION TO ALL OUR CHALLENGES!
They would just put a std::scoped_lock whenever accessing a
critical section.

They would be very careful to use the same mutex whenever
they were trying to protect the same resource.

It felt like magic! At least, it did for a little while…

CORNELL CS4414 - SPRING 2023 26

MORE ISSUES TO CONSIDER

Data structures: The thing we are accessing might not be just a single
counter.

Threads could share a std::list or a std::map or some other structure
with pointers in it. These complex objects may have a complex
representation with several associated fields.

Moreover, with the alias features in C++, two variables can have
different names, but refer to the same memory location.

CORNELL CS4414 - SPRING 2023 27

NOW, A TOUR OF OUR OPTIONS It isn’t just mutex
and scoped_lock!

CORNELL CS4414 - SPRING 2023 28

HARDWARE ATOMICS

Hardware designers realized that programmers would need
help, so the hardware itself offers some guarantees.

First, memory accesses are cache line atomic.

What does this mean?

CORNELL CS4414 - SPRING 2023 29

CACHE LINE: A TERM WE HAVE SEEN BEFORE!

All of NUMA memory, including the L2 and L3 caches, are organized
in blocks of (usually 64) bytes.

Such a block is called a cache line for historical reasons. Basically,
the “line” is the width of a memory bus in the hardware.

CPUs load and store data in such a way that any object that fits in
one cache line will be sequentially consistent.

CORNELL CS4414 - SPRING 2023 30

SEQUENTIAL CONSISTENCY

Imagine a stream of reads and writes by different CPUs

Any given cache line sees a sequence of reads and writes. A
read is guaranteed to see the value determined by the prior
writes.

For example, a CPU never sees data “halfway” through being
written, if the object lives entirely in one cache line.

CORNELL CS4414 - SPRING 2023 31

SEQUENTIAL CONSISTENCY

Sequential consistency is a “read my own writes” policy

 A thread does some updates

 With modern memory, it can take time for those to reach
 the memory unit and for caches to become coherent

 Sequential consistency is the property that if thread A does
 some writes, then reads its own writes, it is guaranteed to
 see them in the order it issued them.

CORNELL CS4414 - SPRING 2023 32

MEMORY FENCING

But suppose that A does writes and B (some other thread) does the
reads. Will it see them?

A “memory fence” is a hardware feature that guarantees this. If A
issues a memory fence, B is certain to see all of A’s prior reads. A
memory-fenced instruction needs a few nanoseconds to ensure this.

Locking uses an atomic with a built-in memory fenced behavior.

CORNELL CS4414 - SPRING 2023 33

WA WA WA RA RB

X Y Z X X
DRAM

MEMORY FENCING

But suppose that A does writes and B (some other thread) does the
reads. Will it see them?

A “memory fence” is a hardware feature that guarantees this. If A
issues a memory fence, B is certain to see all of A’s prior reads. A
memory-fenced instruction needs a few nanoseconds to ensure this.

Locking uses an atomic with a built-in memory fenced behavior.

CORNELL CS4414 - SPRING 2023 34

WA WA WA RA RB

X Y Z X X
DRAM

Always safe: Write then read

Without fence: Unpredictable!

MEMORY FENCING

But suppose that A does writes and B (some other thread) does the
reads. Will it see them?

A “memory fence” is a hardware feature that guarantees this. If A
issues a memory fence, B is certain to see all of A’s prior reads. A
memory-fenced instruction needs a few nanoseconds to ensure this.

Locking uses an atomic with a built-in memory fenced behavior.

CORNELL CS4414 - SPRING 2023 35

WA WA WA RA RB

X Y Z X X
DRAM

Always safe: Write then read

With fence: Safe!

MEMORY FENCING PUZZLE

Suppose I have one main thread and it initializes some objects. But
then it forks off a bunch of child threads. They read those same
objects. Will they see the initialized data? Is locking needed?
 After all: in this case we have (1) multiple threads, (2) shared
 data, (3) a writer and (4) some readers
 And so, yes, we need a memory fence of some form!

Fortunately, std::thread() does some locking and that creates a fence.

CORNELL CS4414 - SPRING 2023 36

TEST_AND_SET, COMPARE_AND_SWAP

These instructions are examples of C++ std library methods
constructed using std::atomics

But there are many things you can do directly with atomics

CORNELL CS4414 - SPRING 2023 37

TERM: “ATOMICITY”

This means “all or nothing”. test_and_set is an atomic instruction

It refers to a complex operation that involves multiple steps, but
in which no observer ever sees those steps in action.

We only see the system before or after the atomic action runs.

CORNELL CS4414 - SPRING 2023 38

HOW POWERFUL IS SEQUENTIAL CONSISTENCY?

This was a famous puzzle in the early days of computing: do we
really need special instructions?

Is sequential consistency enough on its own? There were many
proposed algorithms… and some were incorrect!

Eventually, two examples emerged, with nice correctness proofs

CORNELL CS4414 - SPRING 2023 39

DEKKER’S ALGORITHM FOR TWO PROCESSES

P0 and P1 can enter
freely, but if both try
at the same time, the
“turn” variable allows
first one to get in, then
the other.

CORNELL CS4414 - SPRING 2023 40Note: You are not responsible for Dekker’s algorithm, we show it just for completeness.

DECKER’S ALGORITHM WAS…

Fairly complicated, and not small (wouldn’t fit on one slide in a
font any normal person could read)

Elegant, but not trivial to reason about.

In CS4410 we develop proofs that algorithms like this are
correct, and those proofs are not simple!

CORNELL CS4414 - SPRING 2023 41Note: You are not responsible for Dekker’s algorithm, we show it just for completeness.

LESLIE LAMPORT

Lamport extended Decker’s for many threads,
but also developed a simpler proof of correctness

He uses a visual story to explain his algorithm: a Bakery
with a ticket dispenser

CORNELL CS4414 - SPRING 2023 42Note: You are not responsible for the Bakery algorithm, we show it just for completeness.

Tickets

LAMPORT’S BAKERY ALGORITHM FOR N THREADS

If no other thread
is entering, any
thread can enter

If two or more try
at the same time,
the ticket number
is used.

Tie? The thread
with the smaller id
goes first

CORNELL CS4414 - SPRING 2023 43Note: You are not responsible for the Bakery algorithm, we show it just for completeness.

LAMPORT’S CORRECTNESS GOALS

An algorithm is safe if “nothing bad can happen.” For these mutual
exclusion algorithms, safety means “at most one thread can be in a
critical section at a time.”

An algorithm is live if “something good eventually happens”. So,
eventually, some thread is able to enter the critical section.

An algorithm is fair if “every thread has equal probability of entry”

CORNELL CS4414 - SPRING 2023 44Note: You are not responsible for the Bakery algorithm, we show it just for completeness.

THE BAKERY ALGORITHM IS TOTALLY CORRECT

It can be proved safe, live and even fair.

For many years, this algorithm was actually used to implement
locks, like the scoped_lock we saw on slide 11

These days, the C++ libraries for synchronization use atomics,
and we use the library methods (as we will see in Lecture 15).

CORNELL CS4414 - SPRING 2023 45Note: You are not responsible for the Bakery algorithm, we show it just for completeness.

IMPLICATION?

Once we have sequential consistency, we can create any form of
atomic object we like!

So in this perspective, using locking to safely update a list or a vector
is just an “instance” of a more general capability!

Solutions like std::scoped_lock are higher level abstractions that can
be built from lower-level sequentially consistent memory, perhaps with
help from hardware instructions like test_and_set

CORNELL CS4414 - SPRING 2023 46

ATOMIC MEMORY OBJECTS

Modern hardware supports atomicity for memory operations.

If a variable is declared to be atomic, using the C++ atomics
templates, then basic operations occur to completion in an indivisible
manner, even with NUMA concurrency.

For example, we could just declare
 std::atomic<int> counter; // Now ++ is thread-safe

CORNELL CS4414 - SPRING 2023 47

C / C++ ATOMICS

They actually come in many kinds, with slightly different
properties built in

 So-called weak atomics // FIFO updates, might “see” stale values
 Acquire-release atomics // Like a “memory fence” (slide 35)
 Stong atomics // Like using a mutex lock

CORNELL CS4414 - SPRING 2023 48

SOME ISSUES WITH ATOMICS

The strongest atomics (mutex locks) are slow to access: we
wouldn’t want to use this annotation frequently!

The weaker forms are cheap but very tricky to use correctly

Often, a critical section would guard multiple operations. With
atomics, the individual operations are safe, but perhaps not the
block of operations.

CORNELL CS4414 - SPRING 2023 49

VOLATILE

Volatile tells the compiler that a non-atomic variable might be
updated by multiple threads… the value could change at any time.

This prevents C++ from caching the variable in a register as part of
an optimization. But the hardware itself could still do caching.

Volatile is needed if you do completely unprotected sharing. With
C++ library synchronization, you never need this keyword.

CORNELL CS4414 - SPRING 2023 50

WHEN WOULD YOU USE VOLATILE?

Suppose that thread A will do some task, then set a flag
“A_Done” to true. Thread B will “busy wait”:

 while(A_Done == false) ; // Wait until A is done

Here, we need to add volatile (or atomic) to the declaration of
A_Done. Volatile is faster than atomic, which is faster than a lock.

CORNELL CS4414 - SPRING 2023 51

HIGHER LEVEL SYNCHRONIZATION: BINARY
AND COUNTING SEMAPHORES (~1970’S)
We’ll discuss the counting form
 A form of object that holds a lock and a counter. The developer
 initializes the counter to some non-negative value.
 Acquire pauses until counter > 0, then decrements counter and returns
 Release increments semaphore (if a process is waiting, it wakes up).

C++ has semaphores. The pattern is easy to implement.

CORNELL CS4414 - SPRING 2023 52

Semaphores are a big topic in CS4410, but in CS4414 we don’t use
them because monitors are more powerful and easier to reason about.

PROBLEMS WITH SEMAPHORES
It turned out that semaphores were a cause of many bugs. Consider
this code that protects a critical section:

 mySem.acquire();
 do something; // This is the critical section

 mySem.release();

… unusual control flow could prevent the release(), such as a return
or continue statement, or a caught exception.

CORNELL CS4414 - SPRING 2023 53

Semaphores are a big topic in CS4410, but in CS4414 we don’t use
them because monitors are more powerful and easier to reason about.

PROBLEMS WITH SEMAPHORES

It is also tempting to use semaphores as a form of “go to”

 Process A Process B

 runB.release(); runB.acquire();

This is kind of ugly and can easily cause confusion

CORNELL CS4414 - SPRING 2023 54

Semaphores are a big topic in CS4410, but in CS4414 we don’t use
them because monitors are more powerful and easier to reason about.

BETTER HIGH-LEVEL SYNCHRONIZATION

The complexity of these mechanisms led people to realize that
we need higher-level approaches to synchronization that are
safe, live, fair and make it easy to create correct solutions.

Let’s look at an example of a higher level construct: a bounded
buffer

CORNELL CS4414 - SPRING 2023 55

WHO NEEDS THEM?

We saw a way to pass a “task id” to a thread, in lecture 14.
But sometimes we don’t yet have the information we want to
pass to child threads at launch time and must do it at runtime.

Bounded buffers are one of the best ways to do this.

CORNELL CS4414 - SPRING 2023 56

producers consumers

bounded
buffer

BOUNDED BUFFER (LIKE A LINUX PIPE!)

We have a set of threads.

Some produce objects (perhaps, cupcakes!)

Others consume objects (perhaps, children!)

Goal is to synchronize the two groups.

CORNELL CS4414 - SPRING 2023 57

A RING BUFFER

We take an array of some fixed size, LEN, and think of it as a
ring. The k’th item is at location (k % LEN). Here, LEN = 8

CORNELL CS4414 - SPRING 2023 58

nfree =3
free_ptr = 15

nfull =5
next_item = 10

15 % 8 = 7

10 % 8 = 2

free

free

Item
11

Item
12

Item
13

Item
14

free

Item
10

0

1

2

3
4

5

6

7Producers write
to the next free

entry
Consumers

read from the
head of the
full section

A PRODUCER OR CONSUMER WAITS IF NEEDED

Producer:

void produce(const Foo& obj)
{

 if(nfull == LEN) wait;
 buffer[free_ptr++ % LEN] = obj;
 ++nfull;
 - - nempty;
}

Consumer:

Foo consume()
{

 if(nfull == 0) wait;
 ++nempty;
 - - nfull;
 return buffer[next_item++ % LEN];
}

CORNELL CS4414 - SPRING 2023 59

As written, this code is unsafe… and we can’t fix it just by adding atomics or locks!

WE WILL SOLVE THIS PROBLEM IN LECTURE 16

Doing so yields a very useful primitive!

Putting a safe bounded buffer between a set of threads is a
very effective synchronization pattern!

Example: In fast-wc we wanted to open files in one thread and
scan them in other threads. A bounded buffer of file objects
ready to be scanned was a perfect match to the need!

CORNELL CS4414 - SPRING 2023 60

WHY ARE BOUNDED BUFFERS SO HELPFUL?

… in part, because they are safe with concurrency.

But they also are a way to absorb transient rate mismatches.
 A baker prepares batches of 24 cupcakes at a time.
 The school children buy them one by one.

If LEN ≥ 24, a bounded buffer of LEN cupcakes lets our baker make new
batches continuously. The children can snack wheneverm they like.

CORNELL CS4414 - SPRING 2023 61

TCP

The famous TCP networking protocol builds a bounded buffer
that has two replicas separated by an Internet ink.

On one side, we have a server (perhaps, streaming a movie).

On the other, a consumer (perhaps, showing the movie)!

CORNELL CS4414 - SPRING 2023 62

TCP

TCP is built from a pair of bounded buffers

BUT ONE SIZE DOESN’T “FIT ALL CASES”

Only some use cases match this bounded buffer example (which,
in any case, we still need to solve!)

Locks, similarly, are just a partial story.

So we need to learn to do synchronization in complex situations.

CORNELL CS4414 - SPRING 2023 63

CRITICAL SECTIONS CAN BE SUBTLE!

By now we have seen several forms of aliasing in C++, where a
variable in one scope can also be accessed in some other scope,
perhaps under a different name.

In C++ it is common to overload operators like +, -, even []. So
almost any code could actually be calling methods in classes, or
functions elsewhere in the program.

CORNELL CS4414 - SPRING 2023 64

SUMMARY

Unprotected critical sections cause serious bugs!

Locks are an example of a way to protect a critical section, but
the bounded buffer clearly needs “more”

What we really are looking for is a methodology for writing
thread-safe code that uses C++ libraries safely.

CORNELL CS4414 - SPRING 2023 65

	Synchronization Primitives
	Idea Map For Multiple lectures!
	Idea Map For Today’s lecture!
	… with concurrent threads, some sharing is usually necessary
	Threads A and B share a counter
	Example: Counter is initially 16, and both A and B try to increment it.
	This interleaving causes a bug!
	Standard C++ library guarantee
	BOOST Warning: Read documentation!
	Bruce LindsAy
	Bruce Lindsay
	Concept: critical section
	we need to ensure that A and B can’t both be in the critical section at the same time!
	C++ allows us to do this.
	C++ allows us to do this.
	C++ allows us to do this.
	C++ allows us to do this.
	C++ allows us to do this.
	How does scoped_lock work?
	How does scoped_lock work?
	Common mistake
	Multiple mutex variables
	Rule: scoped_lock
	What do we mean by “at two places”?
	Rule: scoped_lock
	People used to think locks were the solution to all our challenges!
	More Issues to consider
	Now, a tour of our options
	Hardware atomics
	Cache line: A term we have seen before!
	Sequential consistency
	Sequential consistency
	Memory fencing
	Memory fencing
	Memory fencing
	Memory fencing puzzle
	Test_and_set, compare_and_swap
	Term: “Atomicity”
	How powerful is Sequential consistency?
	Dekker’s Algorithm for two processes
	Decker’s algorithm was…
	Leslie Lamport
	Lamport’s Bakery Algorithm for N threads
	Lamport’s correctness goals
	The bakery Algorithm is totally correct
	implication?
	Atomic memory objects
	C / C++ atomics
	Some issues with atomics
	Volatile
	When would you use Volatile?
	Higher level synchronization: Binary and counting semaphores (~1970’s)
	Problems with semaphores
	Problems with Semaphores
	Better high-level synchronization
	Who needs them?	
	bounded buffer (like a Linux Pipe!)
	A ring buffer
	A producer or consumer waits if needed
	We will solve this problem in lecture 16
	Why are bounded buffers so helpful?
	TCP
	But one size doesn’t “fit all cases”
	Critical sections can be subtle!
	Summary

