
THREADS Professor Ken Birman
CS4414 Lecture 14

CORNELL CS4414 - SPRING 2023 1

IDEA MAP FOR TODAY: THREADS!

Today starts a whole unit entirely focused on concurrency
inside a C++ program and how to safely manage it.

CORNELL CS4414 - SPRING 2023 2

Lightweight vs. Heavyweight
threads

Schedulers and multilevel feedback
queues with round-robin scheduling

Reminder: Thread Concept

Memory access speeds in a NUMA
setting with threads

THREADS ARE AWESOME…

We’ve heard about them but haven’t worked with them.

… well, that’s about to change!

This topic starts a whole new unit – our “systems programming
tour of Linux and C++” is finished.

CORNELL CS4414 - SPRING 2023 3

REMINDER: WHAT IS A THREAD?

C++ lets us write a single program that, at runtime, uses parallelism
internally, via what we call a thread.

Use of threads requires a deep understanding of performance
consequences, overheads, and how to program correctly with
concurrency.

Many programs would slow down or crash if you just threw threads in.

CORNELL CS4414 - SPRING 2023 4

THREADS COME IN SEVERAL COLORS

Heavyweight threads are ones running on different CPUs

 They could be sharing one address space…

 … or could be distinct processes, each with a distinct
 address space.

Lightweight threads are ones that share some single CPU. A
scheduler context-switches between them periodically.

CORNELL CS4414 - SPRING 2023 5

THREADS IN THE LINUX KERNEL!

Linux itself is a multithreaded program. Each system call runs on
a distinct thread, and the Linux scheduler and file system have
additional threads of their own.

Linux evolved over decades to take full advantage of this
power. It wasn’t obvious or easy!

CORNELL CS4414 - SPRING 2023 6

WORD COUNT

Recall our word count from Lectures 1-3. It had:
 One “main” thread to process the arguments, then launch threads
 One thread just to open files
 N threads to count words, in parallel, on distinct subsets of the files
 and implement parallel count-tree merge

Main thread resumed control at the end, sorted output, printed it.

CORNELL CS4414 - SPRING 2023 7

HEAVYWEIGHT OR LIGHTWEIGHT?

They all share one address space

But WordCount was coded to work correctly in either case:

 Linux decides how many cores to allow WordCount to use

 Then the thread scheduler (a part of std::thread) decides
 which WordCount threads get to run on their own CPU.

CORNELL CS4414 - SPRING 2023 8

HOW LINUX CREATES THREADS/PROCESSES

Any process can “clone itself” by calling pid = fork().

The parent process will receive the pid of its new child.

The child process is identical to the parent (even shares the same
open files, like stdin, stdout, stderr), but gets pid 0. Typically,
the child immediately “sets up” a runtime environment for itself.

CORNELL CS4414 - SPRING 2023 9

WHY “FORK”

People talk about a “fork in the road”
although they rarely get to go both ways

Recall that in Linux, every process has a parent process, and
/etc/init (runs at boot time) is the parent of everything.

The inventors of Unix (first version of Linux) visualized this a bit
like that famous road in the woods…

CORNELL CS4414 - SPRING 2023 10

“Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood…”
 -- Robert Frost

THE TERM “FORK” HAS LINGERED

If someone says “fork off a thread” or “fork off a process” it
refers to creating a new concurrent task.

 Later, we might wait for that thread or
 thread to finish. This is called a join
event. (like when a stream joins a river)

CORNELL CS4414 - SPRING 2023 11

WITH THREADS, YOU CAN “FOLLOW BOTH
PATHS” IN THE WOODS…
In computing, some ideas (like recursion) are really earth-shaking

Concurrency is one of them! In some ways very hard to do
properly, because of mistakes that can easily arise, and hidden
costs that can destroy the speedup benefits.

But in other ways, concurrency is revolutionary because we use
the hardware so efficiently.

CORNELL CS4414 - SPRING 2023 12

FORK FOLLOWED BY EXEC

In Linux we normally call exec after calling fork.

Fork creates the process and leaves the parent process an
opportunity to “set up” the runtime environment of the child.

Then exec launches some other program, but it runs in the same
process “context” that the forked child set up.

CORNELL CS4414 - SPRING 2023 13

JOIN IS IMPORTANT, TOO!

If the main thread exits while child threads are still running, this
kills the child threads in a chaotic way.

They might not get a chance to clean up and release external
resources they were using, like special graphics hardware. They
could also throw exceptions, causing your program to “crash”
after the main thread was done!

CORNELL CS4414 - SPRING 2023 14

HOW APPLICATIONS CREATE THREADS

Very easy to create: in effect, instead of calling a method, we
“fork it off” in a thread of its own, and the call occurs there.

Like this:

CORNELL CS4414 - SPRING 2023 15

auto fileopener = std::thread(fopener, nfiles, (char**)file_names);
 std::thread my_threads[MAXTHREADS];
 for(int n = 0; n < nthreads; n++)
 {
 my_threads[n] = std::thread(wcounter, n);
 }
 for(int n = 0; n < nthreads; n++)
 {
 my_threads[n].join();
 }
 fileopener.join();

FEATURES OF THREADS

Very easy to create: in effect, instead of calling a method, we
“fork it off” in a thread of its own, and the call occurs there.

Like this:

CORNELL CS4414 - SPRING 2023 16

auto fileopener = std::thread(fopener, nfiles, (char**)file_names);
 std::thread my_threads[MAXTHREADS];
 for(int n = 0; n < nthreads; n++)
 {
 my_threads[n] = std::thread(wcounter, n);
 }
 for(int n = 0; n < nthreads; n++)
 {
 my_threads[n].join();
 }
 fileopener.join();

In fast-wc, wcounter was a
method that takes an integer

id as its single argument

Join pauses to wait for the
designated thread to finish

FIRST CHALLENGE?

We will have two things (or many) running in one address space.

How will each thread know what to do? For example,
“wcounter” needs to know its thread number (for tree-merge)

One option is for a main thread to simply tell them. std::thread
will pass any extra arguments to the function you provide (much
like printf, this is done with variadic template logic)

CORNELL CS4414 - SPRING 2023 17

OTHER OPTIONS FOR SENDING DATA TO A
THREAD YOU CREATE?
As we will see later in this lecture, and the next ones, we could also
have some form of “queue of work to be done”

Then threads can remove jobs from the work queue.

For example, wcounter (in fast-wc) had a queue of files to be
scanned. Each thread looped, scanning the next file. The file opener
thread filled this queue, then (after all files) signaled “done”.

CORNELL CS4414 - SPRING 2023 18

THE THREAD-CREATION OPERATION CAN
TAKE ARGUMENTS

A thread calls a method that returns void, but can have arguments.

In this example, “fopener” is being passed a list of files to open:

CORNELL CS4414 - SPRING 2023 19

A PUZZLE TO THINK ABOUT

Which value of “n” will wcounter see? What if someone is
updating n: will fopener see the original value of n from when
std::thread was called to fork the thread, or an updated version?

By-value arguments are “cloned” when std::thread is invoked.
By-reference arguments are alias names for the value. With an
alias, you will see the updated n, not the value from when the
thread was called. This can lead to bugs!

CORNELL CS4414 - SPRING 2023 20

SLIGHT DIGRESSION: LAMBDAS

To understand the most widely popular notation C++ uses for
launching and coordinating threads we need to pause and
discuss lambdas

Then we can resurface and talk more about threads

CORNELL CS4414 - SPRING 2023 21λ’s

A THREAD CAN RUN A METHOD WITH NO
NAME. THIS IS POPULAR IN C++
A lambda is just a method that doesn’t have a given name.

In effect, a lambda is an expression that can be used as a method:

CORNELL CS4414 - SPRING 2023 22

auto fileopener = std::thread([nfiles, file_names](){ code for file opener });

λ’s

ARGUMENTS

A lambda is just a method that doesn’t have a given name.

In effect, an expression that can be used as a method:

 (): this lambda has no arguments.

Arguments (if any) are supplied at the time the lambda is invoked

CORNELL CS4414 - SPRING 2023 23

auto fileopener = std::thread([nfiles, file_names](){ code for file opener });

λ’s

ARGUMENTS

A lambda is just a method that doesn’t have a given name.

In effect, an expression that can be used as a method:

 Lambda syntax: [stuff] (args) { code }

Arguments (if any) are supplied at the time the lambda is invoked

CORNELL CS4414 - SPRING 2023 24

auto fileopener = std::thread([nfiles, file_names](){ code for file opener });

λ’s

CONCEPT OF CAPTURE

Capture: a way to access variables from the caller’s scope: in
the lambda you can only access variables captured, received as
arguments, or declared locally.

 [nfiles, file_names]… variables “captured” from
 the caller’s runtime context

CORNELL CS4414 - SPRING 2023 25

auto fileopener = std::thread([nfiles, file_names](){ code for file opener });

λ’s

CONCEPT OF CAPTURE

You can capture “everything”, but this is considered to be poor
stylistic practice. Capture “documents” your intentions

 [=] means “capture everything” by value.
[&] means capture by reference.

CORNELL CS4414 - SPRING 2023 26

auto fileopener = std::thread([=](){ code for file opener });

λ’s

PASSING A FUNCTION OR A VOID METHOD
TO SOMETHING THAT CALLS IT
void CallSomething(int (*f)(std::string), std::string str)
{
 cout << “I called f, and it returned “ << f(str) << endl;
}

Note that there is a typedef for this kind of “function argument”
in the std::functions library. Simpler notation, hence popular.

CORNELL CS4414 - SPRING 2023 27λ’s

PASSING A FUNCTION OR A VOID METHOD
TO SOMETHING THAT CALLS IT
void CallSomething(int (*f)(std::string), std::string str)
{
 cout << “I called f, and it returned “ << f(str) << endl;
}
int func(std::string s)
{
 cout << “This is f, and my argument was “ << s << endl;
 return s.size();
}

CORNELL CS4414 - SPRING 2023 28λ’s

PASSING A FUNCTION OR A VOID METHOD
TO SOMETHING THAT CALLS IT
void CallSomething(int (*f)(std::string), std::string str)
{
 cout << “I called f, and it returned “ << f(str) << endl;
}
int func(std::string s)
{
 cout << “This is f, and my argument was “ << s << endl;
 return s.size();
}

CORNELL CS4414 - SPRING 2023 29

CallSomething(func, “Hello”);

λ’s

PASSING A FUNCTION OR A VOID METHOD
TO SOMETHING THAT CALLS IT
void CallSomething(int (*f)(std::string), std::string str)
{
 cout << “I called f, and it returned “ << f(str) << endl;
}
int func(std::string s)
{
 cout << “This is f, and my argument was “ << s << endl;
 return s.size();
}

CORNELL CS4414 - SPRING 2023 30

CallSomething(func, “Hello”);

This is a notation for the
type corresponding to a
function that takes a string
argument and returns an int.

λ’s

PASSING A FUNCTION OR A VOID METHOD
TO SOMETHING THAT CALLS IT
void CallSomething(int (*f)(std::string), std::string str)
{
 cout << “I called f, and it returned “ << f(str) << endl;
}
int func(std::string s)
{
 cout << “This is f, and my argument was “ << s << endl;
 return s.length();
}

CORNELL CS4414 - SPRING 2023 31

CallSomething([](std::string s){ cout << … << endl; return s.size(); }, “Hello”)

Identical logic, but now “func”
is passed as a lambda

λ’s

CAPTURE SYNTAX OPTIONS

The lambda can obtain a reference to any valuable in the
caller’s scope [&x] or can capture the value [x]. Value means
“make a copy for this lambda call”

You can also mix the two, by adding “=“, like this: [&x, =y]

Once a lambda captures a scope variable by reference, we say
that it has an “alias” to that variable.

CORNELL CS4414 - SPRING 2023 32λ’s

WHY DOES C++ THREAD CREATE HAVE BOTH
CAPTURE AND ALSO THREAD ARGUMENTS?
It may feel as if the variables in the […] part are no different from the
parameters in the (…) part.

The difference is that when launching a thread, the caller supplies the
arguments. Each could have a different argument.

Capture is useful because a lambda is actually an “expression” – you
can define a lambda in one place but use it elsewhere. In the code
that calls the lambda, those captured variables might not be in scope.

CORNELL CS4414 - SPRING 2023 33λ’s

WHAT IF YOU ACCESS A VARIABLE THAT
ISN’T LISTED IN THE CAPTURE CLAUSE?
In the lambda, the only variables defined “by default” are the ones
from the capture clause.

It has to declare its arguments, like any function, and also any other
variables used within the lambda code

The danger with [=] and [&] is that it is too easy to forget to declare
a local variable like n, and end up wastefully making a copy or
worse, modifying n in the outer scope that defined the lambda!

CORNELL CS4414 - SPRING 2023 34λ’s

… BACK ON TOPIC

Now we know lambda syntax and can return to talking about
threads

You’ll see more examples using lambda notation in these slides
and in future lectures.

CORNELL CS4414 - SPRING 2023 35λ’s

… AND NOW OUR THREADS CAN RUN!

Once we have created our threads, each will have:
 Its own stack, on which local variables will be allocated
 Its own “PC” register, and other registers
 Its own independent execution.
 Access to objects that might also be accessed by other threads!

This last case can cause issues, as we will see in future lectures. The big
risk is that one thread could modify something while another is looking,
causing one or both to crash. But we can use locking for thread-safety.

CORNELL CS4414 - SPRING 2023 36

… RUN ON WHICH CORE?

Which core will a thread run on?

In fact, unless you specify that you want to use more than one
core, Linux will run all the threads on the same core!

So if we do nothing and create 20 threads, the one CPU core must
context switch between those 20 threads. (Linux does this automatically).

CORNELL CS4414 - SPRING 2023 37

LIGHTWEIGHT THREADS

We say that a thread is “lightweight” if it doesn’t have a core
dedicated to it. A “heavyweight” thread has its own core.

With lightweight threads we can have many per core.

CORNELL CS4414 - SPRING 2023 38

HOW IT WORKS

Internal to Linux is a clock, and this clock is configured by the
kernel to interrupt at various rates.

When your lightweight thread is running, the threads library
asks Linux to send a signal after, say, 25ms.

The clock interrupts the kernel, and Linux signals std::thread

CORNELL CS4414 - SPRING 2023 39

AT THIS POINT THE SIGNAL HANDLER IS
RUNNING IN STD::THREAD
Recall that running a signal handler is like doing a method call,
except that the kernel “caused” the method to run.

So at this moment, registers and the PC of the current thread
have been pushed to the stack!

We call this stack and saved register state a “context”.

CORNELL CS4414 - SPRING 2023 40

THREAD CONTEXTS

CORNELL CS4414 - SPRING 2023 41

 Multiple threads can be associated with a process
 Each thread has its own logical control flow
 Each thread shares the same code, data, and kernel context
 Each thread has its own stack for local variables

 but not protected from other threads
 Each thread has its own thread id (TID)

Thread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2 (child thread)

THREAD STACKS

Although the main thread has a stack that can grow without limit,
this is not the situation for spawned child threads.

They have limited stack sizes (default: 2MB, but you can specify
a larger size)

Overflow will cause the entire process to crash.

CORNELL CS4414 - SPRING 2023 42

STACK ALLOCATION: SAFE, BUT BE CAUTIOUS

2MB is a large amount of space and won’t easily be used up.
C++ gives a stack overflow exception if you manage to do so.

But we can’t put really big objects on the stack, or do really
deep recursion with even medium-sized objects on the stack.

CORNELL CS4414 - SPRING 2023 43

CONTEXT SWITCHING

The std::thread scheduler looks at the list of currently active
threads to see if any are runnable.

This means: ready to execute, but currently paused.

In some order, it picks one of the runnable threads, and “context
switches” to it, meaning that in that other thread, we return from
the signal that was used to pause it!

CORNELL CS4414 - SPRING 2023 44

POLICIES FOR SCHEDULING THREADS

We call this context switching step a “scheduling” event

Modern schedulers treat threads differently based on how they
are behaving.

A thread that crunches without pausing for long periods will be
scheduled for long “quanta” (means “chunks of time”)

CORNELL CS4414 - SPRING 2023 45

… IN CONTRAST

A thread that frequently pauses (like to wait for I/O) will be
scheduled more urgently, but with a very small quanta.

The idea is that we want snappy responses to the console, or to
other I/O events. In contrast, we shouldn’t incur too much
overhead for the data-crunching threads, so we let them run for
a longer period.

CORNELL CS4414 - SPRING 2023 46

SCHEDULER CONCEPT: MULTILEVEL FEEDBACK
QUEUE WITH ROUND ROBIN SCHEDULING

This is a clever idea for letting the behavior of the threads
shape the choice of which scheduling quanta to use.

We start with the concept of a round-robin queue.

Our runnable threads are pushed to the end of the queue. The
scheduler runs the thread at the front of the queue for a fixed
quanta (or until the thread itself pauses to wait for something).

CORNELL CS4414 - SPRING 2023 47

A SCHEDULER QUEUE

Each paused thread has an associated scheduler data structure
plus a context. The one on the queue longest is at the front”

… Here, thread D will run next

CORNELL CS4414 - SPRING 2023 48

Thread A:

Runnable
Has run for 81ms
Context = [….]

Thread C:

Runnable
Has run for 19ms
Context = [….]

Thread D:

Runnable
Has run for 28ms
Context = [….]

MULTILEVEL FEEDBACK QUEUE:
AN ARRAY OF QUEUES!
std::list<std::list<ThreadContext>>

CORNELL CS4414 - SPRING 2023 49

Long-running threads
larger scheduling δ

Short-running threads
smaller scheduling δ

Thread A:

Runnable
Has run for 81ms
Context = [….]

Thread C:

Runnable
Has run for 19ms
Context = [….]

Thread D:

Runnable
Has run for 127ms
Context = [….]

Thread Y:

Runnable
Has run for 1819ms
Context = [….]

Thread X:

Runnable
Has run for 261ms
Context = [….]

RULE FOR MOVING FROM QUEUE TO QUEUE

Track how long each thread has been running (without waiting)

If a thread has run long enough it moves to the next queue up.

If a thread pauses after a very short total time, it moves down.

CORNELL CS4414 - SPRING 2023 50

… SO THERE ARE THREE CONTROL
PARAMETERS TO THE ALGORITHM
We can have as many levels as we find helpful, but usually 2 or 3
suffice.

Now, the scheduler can rotate between queues. For total time ∆ it runs
jobs on the long-running jobs queue. Then it drops to the smaller-jobs
queue and runs those.

The long-running jobs get a big per-job δ. Shorter jobs get a smaller
δ. So, we run many short jobs compared to long-running jobs.

CORNELL CS4414 - SPRING 2023 51

THAT WAS ALL WITH A SINGLE CORE!

Now we can introduce more than one core to the mix!

In Linux, the default number of cores available to you is hard to
predict – it depends on how the OS was configured. To be sure you
will run on multiple cores, you use a command called taskset.

Each core has a number, and taskset takes a bit-array (in hex)
indicating which cores this job will be using, e.g. taskset 0xFF.

CORNELL CS4414 - SPRING 2023 52

ONE CORE PER THREAD: -PTHREAD, TASKSET

To activate multicore parallelism you must

1) Compile your program with the gcc flag –lpthread

2) Use “taskset mask” when launching your program:

 taskset 0xFF fast-wc –n7 –s

 … this example says “run fast-wc on cores 0…7”, and also
 passes in two arguments, -n7, -s. Fast-wc will run with 7
 word-counter threads and one file opener, in “silent” mode.

CORNELL CS4414 - SPRING 2023 53

Arguments to main in fast-wc

HOW TASKSET WORKS

Taskset waits for “exclusive ownership” of the requested cores.
Only one application can own a given core.

The pthread library is told which cores it owns.

Pthreads will scatter threads over the cores unless you specify a
desired core when launching them (via std::thread).

CORNELL CS4414 - SPRING 2023 54

DANGER! REMOTE MEMORY!

Recall from early lectures: on a NUMA machine, memory access
speeds are very dependent on which core is accessing data in
which memory.

NUMA looks like one big memory, but in fact is split into memory
banks, and a core is only “close” to one of the memory units.

CORNELL CS4414 - SPRING 2023 55

WHY IS THIS BAD???

Because if thread A is close to some object X, and thread B is far
away from X, their performance can be extremely different.

This is often really confusing if you don’t realize that a NUMA effect
has snuck into your program.

Some programmers make a local copy of heavily used objects, to
ensure that all objects a thread uses intensively are local!

CORNELL CS4414 - SPRING 2023 56

MALLOC KNOWS ABOUT THREADS

Malloc knows that…
 Objects can be shared without any form of segmentation faults
 But local memory accesses are much faster than remote, unless the
 remote object is pulled into the L2/L3 cache hierarchy.

Malloc automatically creates new objects in the memory pool closest to
that thread’s core, if it has room to do so.

CORNELL CS4414 - SPRING 2023 57

EXAMPLE…

In Ken’s word counter, each wcounter thread had its own std::map
tree, to hold the (word, counter) pairs.

Those trees were automatically close to the thread that created
them, which made them fast to access.

Had wcounter used a single tree, shared by all, the program
would have been significantly slower!

CORNELL CS4414 - SPRING 2023 58

WE OFTEN MAKE SPARE COPIES TO SHARE
AMONG THREADS!
With read-only objects, we often make a replica of the object
for each thread to ensure that we will get the fastest possible
access to it.

We do this by passing a reference to the “original” copy, and
then having the thread make a copy as it starts up, or by
passing the object by value as a captured object or argument.

CORNELL CS4414 - SPRING 2023 59

THREADS: THE MAIN RISKS

Synchronization to prevent concurrent memory operations from
interfering (if two or more threads access the same data)

Your code might not even speed up, unless you are smart about
memory costs and synchronization costs.

Clean termination can be challenging.

CORNELL CS4414 - SPRING 2023 60

SUMMARY

It is quite easy to create both lightweight and heavyweight
threads.

One core can be shared by multiple lightweight threads.

We also learned new C++ features for writing this kind of code
more concisely (lambda expressions).

CORNELL CS4414 - SPRING 2023 61

	Threads
	Idea Map For Today: Threads!
	Threads are awesome…
	Reminder: What is a thread?
	Threads come in several colors
	Threads in The Linux Kernel!
	Word Count
	Heavyweight or lightweight?
	How linux creates threads/processes
	Why “fork”
	The term “fork” has lingered
	With threads, you can “follow both paths” in the woods…
	Fork followed by exec
	Join is important, too!
	How applications create threads
	Features of threads
	First challenge?
	Other options for sending data to a thread you create?
	The thread-creation operation can take arguments
	A puzzle to think about
	Slight digression: Lambdas
	A thread can run a method with no name. This is popular in C++
	Arguments
	Arguments
	Concept of Capture
	Concept of Capture
	Passing a function or a void method to something that calls it
	passing a function or a void method to something that calls it
	passing a function or a void method to something that calls it
	passing a function or a void method to something that calls it
	passing a function or a void method to something that calls it
	Capture syntax options
	Why does C++ thread create have both capture and also thread arguments?
	What if you access a variable that isn’t listed in the capture clause?
	… back on topic
	… And now Our threads can run!
	… Run on which core?
	Lightweight threads
	How it works
	At this point the signal handler is running in std::thread
	Thread contexts
	Thread stacks
	Stack allocation: Safe, but be cautious
	Context switching
	Policies for scheduling threads
	… in contrast
	Scheduler concept: MultiLevel Feedback Queue with Round Robin Scheduling
	A scheduler queue
	Multilevel feedback Queue:�an array of queues!
	Rule for moving from queue to queue
	… so there are three control parameters to the algorithm
	That was all with a single core!
	One core per thread: -Pthread, Taskset
	How taskset works
	Danger! Remote Memory!
	Why is this bad???
	Malloc knows about threads
	Example…
	We often make spare copies to share among threads!
	Threads: The main risks
	Summary

