
LINKING… HOW BASIC MECHANISMS
ENABLE SOPHISTICATED WRAPPERS

Professor Ken Birman
CS4414 Lecture 13

CORNELL CS4414 - SPRING 2023 1

SYSTEMS PROGRAMMING IS ABOUT TAKING
CONTROL OVER EVERYTHING
We have seen that a systems programmer learns to “program”
the hardware, operating system and software, including the
C++ compiler itself, which we “program” via templates.

Today we will look at how linking works, and by doing so, we
will discover another obscure example of a programmable
feature that you might not normally expect to be able to control!

CORNELL CS4414 - SPRING 2023 2

CORE SCENARIO – PART I

Libraries can be quite big – some are huge. The memory of
your computer can easily be completely filled by copies of
libraries – maybe identical ones!

CORNELL CS4414 - SPRING 2023 3

CORE SCENARIO – PART II

We are given a system that has pre-implemented programs in it
(compiled code plus libraries).

But now we want to change the behavior of some existing API.

Can it be done?

CORNELL CS4414 - SPRING 2023 4

IDEA MAP FOR TODAY

CORNELL CS4414 - SPRING 2023 5

Compiling to an
object file

Static versus dynamic linking in Linux.

Dynamic linking: -shared -fPIC compilation.
DLL segments, issue of base address

Libraries

Wrappers for method interpositioning: a
“super hacker” technique!

Main part of lecture.
Be sure to understand this.

Insane/weird part, introduces
some amazing features

LINKING

A linker takes a collection of object files and combines them into an
object file. But this object file will still depend on libraries.

Next it cross-references this single object file against libraries,
resolving any references to methods or constants in those libraries.

If everything needed has been found, it outputs an executable image.

CORNELL CS4414 - SPRING 2023 6

Your code

+ =
Std:xxx libraries

Libraries your
company created

Statically linked
object files

Executable

Compile time… … Runtime

EXAMPLE C PROGRAM (C++ IS THE SAME)

int sum(int *a, int n);

int array[2] = {1, 2};

int main(int argc, char** argv)
{

int val = sum(array, 2);
return val;

}

int sum(int *a, int n)
{

int i, s = 0;

for (i = 0; i < n; i++) {
s += a[i];

}
return s;

}
main.c sum.c

CORNELL CS4414 - SPRING 2023 7

LINKING Gcc is really a “compiler driver”: It launches a series of sub-programs
linux> gcc -Og -o prog main.c sum.c
linux> ./prog

Linker (ld)

Translators
(cpp, cc1, as)

main.c

main.o

Translators
(cpp, cc1, as)

sum.c

sum.o

prog

Source files

Separately compiled
relocatable object files

Fully linked executable object file
(contains code and data for all functions
defined in main.c and sum.c)

CORNELL CS4414 - SPRING 2023 8

WHY LINKERS? REASON 1: MODULARITY

Program can be written as a collection of smaller source files, rather than
one monolithic mass. But later we need to combine all of these.

Each C++ class normally has its own hpp file (declares the type
signatures of the methods and fields) and a separate cpp file
(implements the class).

For fancy templated classes, C++ itself creates the needed cpp files, one
for each distinct type-parameters list.

CORNELL CS4414 - SPRING 2023 9

AN OBJECT FILE IS AN INTERMEDIATE FORM

An object file contains “incomplete” machine instructions, with
locations that may still need to be filled in:
 Addresses of methods defined in other object files, or libraries
 Addresses of data and bss segments, in memory

After linking, all the “resolved” addresses will have been inserted at
those previously unresolved locations in the object file.

CORNELL CS4414 - SPRING 2023 10

TWO FORMS OF ADDRESSING

For today’s lecture, we think mostly of “absolute” addresses in
the virtual address space, and “base-relative” ones where some
sort of pointer exists, and the object is at an offset from it.

Both are supported very efficiently by Intel and AMD/ARM

So the compiler thinks “which choice is best”?

CORNELL CS4414 - SPRING 2023 11

WHICH DOES IT PICK?

For branching inside a single method, it favors absolute
addressing if feasible, but can also use “PC relative” ones.

For accessing data in a data segment, it can use “base relative”
addressing. Useful if we have multiple code segments and each
has its own data segment.

In general, absolute addressing is a tiny bit faster.
CORNELL CS4414 - SPRING 2023 12

REASON 2 FOR LINKINGS: LIBRARIES

Libraries aggregate common functions or classes.

Static linking combines modules of a program, but also
used to be the main way of linking to libraries:
 Executables include copies of any library modules they reference
 (but just those .o files, not others in the library)
 Executable is complete and self-sufficient. It should run on any
 machine with a compatible architecture.

CORNELL CS4414 - SPRING 2023 13

REASON 2: LIBRARIES

Dynamic linking is more common today
 Your executable program doesn’t need to contain library code
 At execution, single copy of library code is shared, but the dynamic
 linker does need to be able to find the library file (a “.so” file)

If a dynamically linked executable is launched on a machine that lacks
the DLL, you will get an error message (usually, on startup, but there are
some obscure cases where it happens later, when the DLL is needed)

CORNELL CS4414 - SPRING 2023 14

HOW LINKING WORKS: SYMBOL RESOLUTION

Programs define and reference symbols (global variables and
functions):
 void swap() {…} /* define symbol swap */
 swap(); /* reference symbol swap */
 int *xp = &x; /* define symbol xp, reference x */

Symbol definitions are stored in object file in the symbol table.
 Symbol table is an array of entries
 Each table entry includes name, type, size, and location of symbol.
 With C++ the “location” is the “namespace” that declared the class

CORNELL CS4414 - SPRING 2023 15

… THREE CASES

A symbol can be defined by the object file.

It can be undefined, in which case the linker is required to find
the definition and link the object file to the definition.

It can be multiply defined. This is normally an error… but we
will see one tricky way that it can be done, and even be useful!

CORNELL CS4414 - SPRING 2023 16

SYMBOLS IN EXAMPLE C PROGRAM

int sum(int *a, int n);

int array[2] = {1, 2};

int main(int argc, char** argv)
{

int val = sum(array, 2);
return val;

}

int sum(int *a, int n)
{

int i, s = 0;

for (i = 0; i < n; i++) {
s += a[i];

}
return s;

}
main.c sum.c

Definitions

Reference

CORNELL CS4414 - SPRING 2023 17

LINKERS CAN “MOVE THINGS AROUND”. WE
CALL THIS “RELOCATION”

A linker merges code and data sections into single sections

 As part of this it relocates symbols from their relative locations in the
.o files to their final absolute memory locations in the executable.

 It updates references to these symbols to reflect their new positions.

CORNELL CS4414 - SPRING 2023 18

OBJECT FILE FORMAT (ELF)

Elf header
 Word size, byte ordering, file type (.o, exec, .so), machine type, etc.

Segment header table
 Page size, virtual address memory segments + sizes.

.text section (code)

.rodata section (read-only data, jump offsets, strings)

.data section (initialized global variables)

.bss section (name “bss” is lost in history)
 Global variables that weren’t initialized: zeros.
 Has section header but occupies no space

ELF header

Segment header table
(required for executables)

.text section

.rodata section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

0

.data section

CORNELL CS4414 - SPRING 2023 19

EXAMPLE OF SYMBOL RESOLUTION

int sum(int *a, int n);

int array[2] = {1, 2};

int main(int argc,char **argv)
{

int val = sum(array, 2);
return val;

} main.c

int sum(int *a, int n)
{

int i, s = 0;

for (i = 0; i < n; i++) {
s += a[i];

}
return s;

} sum.c

Referencing
a global…

Defining
a global

Linker knows
nothing of val

Referencing
a global…

…that’s defined here

Linker knows
nothing of i or s

…that’s defined here

CORNELL CS4414 - SPRING 2023 20

• incr
• foo
• a
• argc
• argv
• b
• main
• printf
• Others?

SYMBOL IDENTIFICATION
Which of the following names will be in the symbol
table of symbols.o?

symbols.c:

int incr = 1;
static int foo(int a) {
 int b = a + incr;
 return b;
}

int main(int argc,
 char* argv[]) {
 printf("%d\n", foo(5));
 return 0;
}

Names:

• incr
• foo
• a
• argc
• argv
• b
• main
• printf
• "%d\n"

Can find this with readelf:
 linux> readelf –s symbols.o

CORNELL CS4414 - SPRING 2023

LOCAL SYMBOLS
Local non-static C variables vs. local static C variables
Local non-static C variables: stored on the stack
Local static C variables: stored in either .bss or .data

static int x = 15;

int f() {
 static int x = 17;
 return x++;
}

int g() {
 static int x = 19;
 return x += 14;
}

int h() {
 return x += 27;
}

Compiler allocates space in .data for
each definition of x

Creates local symbols in the symbol
table with unique names, e.g., x,
x.1721 and x.1724.

static-local.c CORNELL CS4414 - SPRING 2023 22

HOW LINKER RESOLVES DUPLICATE SYMBOL
DEFINITIONS
Program symbols are either strong or weak
 Strong: methods (code blocks) and initialized globals
 Weak: uninitialized globals (or with specifier extern)

… but be aware that the “weak” case can cause real trouble!

int foo=5;

p1() {
}

int foo;

p2() {
}

p1.c p2.c

strong

weak

strong

strong

CORNELL CS4414 - SPRING 2023 23

LINKER WITH MULTIPLE WEAK DECLARATIONS

int x;
p1() {}

int x;
p2() {}

int x;
int y;
p1() {}

double x;
p2() {}

int x=7;
int y=5;
p1() {}

double x;
p2() {}

int x=7;
p1() {}

int x;
p2() {}

int x;
p1() {} p1() {} Link time error: two strong symbols (p1)

References to x will refer to the same
uninitialized int. Is this what you really want?

Writes to x in p2 might overwrite y!
Evil!

Writes to x in p2 might overwrite y!
Nasty!

Important: Linker does not do type checking. But C++ “namespaces” create a private naming scope.

References to x will refer to the same initialized
variable.

CORNELL CS4414 - SPRING 2023 24

/* Global strong symbol */
double x = 3.14;

GLOBAL TYPE MISMATCHES CAUSE BUGS

Compiles without any errors or warnings, yet this is a bug!

What gets printed?

long int x; /* Weak symbol */

int main(int argc,
 char *argv[]) {
 printf("%ld\n", x);

 return 0;
}

/* Global strong symbol */
double x = 3.14;

mismatch-variable.cmismatch-main.c

CORNELL CS4414 - SPRING 2023 25

STATIC LIBRARIES

Translator

atoi.c

atoi.o

Translator

printf.c

printf.o

libc.a

Archiver (ar)

... Translator

random.c

random.o

unix> ar rs libc.a \
 atoi.o printf.o … random.o

C standard library, static version

 Archiver creates a single file that contains all the .o files, plus a lookup
table (basically, a “directory”) that the linker can use to find the files.

CORNELL CS4414 - SPRING 2023 26

COMMONLY USED LIBRARIES
libc.a (the C standard library)
4.6 MB archive of 1496 object files.

I/O, memory allocation, signal handling, string handling, data and time, random
numbers, integer math

libm.a (the C math library)
2 MB archive of 444 object files.

floating point math (sin, cos, tan, log, exp, sqrt, …)

% ar –t /usr/lib/libc.a | sort
…
fork.o
…
fprintf.o
fpu_control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o
…

% ar –t /usr/lib/libm.a | sort
…
e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
e_asin.o
e_asinf.o
e_asinl.o
…

CORNELL CS4414 - SPRING 2023 27

LINKING WITH
STATIC LIBRARIES

#include <stdio.h>
#include "vector.h"

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main(int argc, char**
argv)
{
 addvec(x, y, z, 2);

printf("z = [%d %d]\n”,
z[0], z[1]);

return 0;
}

main2.c

void addvec(int *x, int *y,
int *z, int n) {

int i;

 for (i = 0; i < n; i++)
z[i] = x[i] + y[i];

}

void multvec(int *x, int *y,
int *z, int n)

{
int i;

for (i = 0; i < n; i++)
z[i] = x[i] * y[i];

} multvec.c

addvec.c

libvector.a

CORNELL CS4414 - SPRING 2023 28

LINKING WITH STATIC LIBRARIES

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.a

Linker (ld)

prog2c

printf.o and any other
modules called by printf.o

libvector.a

addvec.o

Static libraries

Relocatable
object files

Fully linked
executable object file
(861,232 bytes)

vector.h Archiver
(ar)

addvec.o multvec.o

“c” for “compile-time”

unix> gcc –static –o prog2c \
 main2.o -L. -lvector

CORNELL CS4414 - SPRING 2023 29

USING STATIC LIBRARIES
Linker’s algorithm for resolving external references:
Scan .o files and .a files in the command line order.
During the scan, keep a list of the current unresolved references.
As each new .o or .a file, obj, is encountered, try to resolve
each unresolved reference in the list against the symbols defined
in obj.
If any entries in the unresolved list at end of scan, then error.

Problem:
Command line order matters!
Moral: put libraries at the end of the command line.

unix> gcc -static -o prog2c -L. -lvector main2.o
main2.o: In function `main':
main2.c:(.text+0x19): undefined reference to `addvec'
collect2: error: ld returned 1 exit status

CORNELL CS4414 - SPRING 2023 30

SHARED LIBRARIES

Static libraries have the following disadvantages:
 Duplication in the stored executables (every function needs libc)
 Duplication in the running executables
 Minor bug fixes in system libraries? Must rebuild everything!

Example: hugely disruptive 2016 library issue:
 https://security.googleblog.com/2016/02/cve-2015-7547-glibc-
getaddrinfo-stack.html

CORNELL CS4414 - SPRING 2023 31

https://security.googleblog.com/2016/02/cve-2015-7547-glibc-getaddrinfo-stack.html
https://security.googleblog.com/2016/02/cve-2015-7547-glibc-getaddrinfo-stack.html

SHARED LIBRARIES

Shared libraries save space and resolve this issue.

Term refers to:
 Object files that contain code and data.
 Saved in a special directly (LOADPATH points to it).
 Loaded and linked into an application dynamically, at either load-time
 or run-time
 Also called: dynamic link libraries, DLLs, .so files

CORNELL CS4414 - SPRING 2023 32

DYNAMIC LIBRARY EXAMPLE

Translator

addvec.c

addvec.o

Translator

multvec.c

multvec.o

libvector.so

Loader (ld)

unix> gcc -shared -o libvector.so \
 addvec.o multvec.o

Dynamic vector library

unix> gcc –Og –c addvec.c multvec.c -fpic

CORNELL CS4414 - SPRING 2023 33

DYNAMIC LINKING AT LOAD-TIME

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.so
libvector.so

Linker (ld)

prog2l

Dynamic linker (ld-linux.so)

Relocation and symbol
table info

libc.so
libvector.so

Code and data

Partially linked
executable object file

(8488 bytes)

Relocatable
object file

Fully linked
executable
in memory

vector.h

Loader
(execve)

unix> gcc -shared -o libvector.so \
 addvec.c multvec.c -fpic

unix> gcc –o prog2l \
 main2.o ./libvector.so

CORNELL CS4414 - SPRING 2023 34

FOR DYNAMIC LINKING, RELOCATION
OCCURS AT RUNTIME
The program using the DLL is coded to access DLL methods via a
special “indirection” table.

Initially this table has on entry per library method but all of
them are “wired” to call “load on first access”

This method automatically loads the DLL and patches references

CORNELL CS4414 - SPRING 2023 35

REMINDER: MMAPPED FILE

A file… but fully loaded into memory by the kernel

Those physical pages can now show up as virtual pages in any
address space that calls mmap() and has permission

The pages are only in memory “once”. The page table entries
are small so the overheads are minor.

CORNELL CS4414 - SPRING 2023 36

STEPS IN DLL LOADING

Automatic, but what the method does is
 Map the DLL file itself into memory. If it is already in memory
 the single copy will be shared. This is our space savings
 That new DLL will need its own private copy of the data and
 bss segment. Allocate space, and remember the base
 address.
 Now, when foo(x) gets called, we just load that base address
 in a designated register and call (*address_of_foo)(x) !

CORNELL CS4414 - SPRING 2023 37

… STEPS IN DLL LOADING AS GRAPHIC

Initially, myprog doesn’t have
the DLL loaded.

Calls to methods like “fwrite”
will actually call __loader via
function-pointer indirection

CORNELL CS4414 - SPRING 2023 38

myprog

DLL name Method name Pointer to method

/…/libc.so fwrite(…) __loader

/…./vector.so push_back(…) __loader

… STEPS IN DLL LOADING AS GRAPHIC
On the first call, __loader is
invoked and uses Linux file
mapping (mmap) to map the DLL
into memory. The pages of this
segment will be shared, read-
only, with other users.

This lets the loader learn the base
address of the new segment

CORNELL CS4414 - SPRING 2023 39

myprog

DLL name Method name Pointer to method

/…/libc.so fwrite(…) __loader

/…./vector.so push_back(…) __loader

fwrite(…) {
 …
}

libc.so

Base address: 0x103290

Offset: 0x12020

fwrite(…)

… STEPS IN DLL LOADING AS GRAPHIC

Next, it makes a clone (a
private copy) of the data
segment and bss segment used
by libc.so. The mapped
segment has a read-only copy.

This is because each process
using the DLL needs its own
version of the global variables

CORNELL CS4414 - SPRING 2023 40

myprog

DLL name Method name Pointer to method

/…/libc.so fwrite(…) __loader

/…./vector.so push_back(…) __loader

fwrite(…) {
 …
}

libc.so

Base address: 0x103290

Offset: 0x12020

fwrite(…) Private
data

segment

… STEPS IN DLL LOADING AS GRAPHIC

Now the loader can patch up
the indirection table.

A call to fwrite will go to a
little method that (1) puts the
base address of libc.so and the
associated data segment into a
register, then calls the version in
the mapped memory region

CORNELL CS4414 - SPRING 2023 41

myprog

DLL name Method name Pointer to method

/…/libc.so fwrite(…) __loader

/…./vector.so push_back(…) __loader

fwrite(…) {
 …
}

libc.so

Base address:
0x103290

Offset: 0x12020

fwrite(…)

Private
data

segment

WHEN FWRITE IS INVOKED…

Main “calls” the wrapper function.

That wrapper arranges for c++ to put the base address in the base
address register (the prior value is pushed to the stack)

The call occurs and frwrite runs

The prior value of the base address register is popped and restored

CORNELL CS4414 - SPRING 2023 42

WHY DID WE SAVE MEMORY?

The segment holding libc.so could be huge – it is hard to get
used to “sizes” of things, but shared libraries can be very large.

Many of them have really big in-memory data structures or
helper data of various kinds, like ML models.

This can add up to gigabytes. Now those will be shared, in
read-only mapped memory

CORNELL CS4414 - SPRING 2023 43

HOW DOES THE C++ COMPILER KNOW THAT
FWRITE(…) WILL LIVE IN A DLL?
… it does need to know, because the DLL can land at a
different place in each process using it.
 Every process has its own address space layout.

So, gcc needs to use pointer and base-relative addressing

But who tells it? You do. The DLL developer must “say this”

CORNELL CS4414 - SPRING 2023 44

GCC OPTIONS USED HERE

1) –shared, -fpic: To create position independent code (next slide)

2) –o something.so: To output result as a DLL

3) –rdynamic: Includes dynamic symbol names for gprof, gdb

4) –ldr: “dr” is the directory to look for the .so file in

CORNELL CS4414 - SPRING 2023 45

DYNAMIC LINKING AT RUN-TIME

Translators
(cpp, cc1, as)

dll.c

dll.o

libc.so

Linker (ld)

prog2r

Dynamic linker (ld-linux.so)

Relocation and symbol
table info

libc.so

Code and data

Partially linked
executable object file

(8784 bytes)

Runtime-
relocatable
object file

Fully linked
executable
in memory

vector.h

Loader
(execve)

unix> gcc -shared -o libvector.so \
 addvec.c multvec.c -fpic

Call to dynamic linker via dlopen

libvector.so

unix> gcc -rdynamic –o prog2r \
 dll.o -ldl

CORNELL CS4414 - SPRING 2023 46

RUNTIME ERRORS

At runtime, your program searches for the .so file

What if it can’t find it?
 You will get an error message during execution, and the executable
 will terminate. Depending on the version of Linux, this occurs when
 you launch the program, or when it tries to access something in the dll

Some dll files also have “versioning” data. On these, your program might
crash because of an “incompatible dll version number”

CORNELL CS4414 - SPRING 2023 47

LINKING SUMMARY

Linking is a technique that allows programs to be constructed from
multiple object files

Linking can happen at different times in a program’s lifetime:
Compile time (when a program is compiled)
Load time (when a program is loaded into memory)
Run time (while a program is executing)

Understanding linking can help you avoid nasty errors and make you
a better programmer

CORNELL CS4414 - SPRING 2023 48

GETTING VERY FANCY: LIBRARY
INTERPOSITIONING (FOR SERIOUS HACKERS!)
Documented in Section 7.13 of book
Library interpositioning: powerful linking technique that allows
programmers to intercept calls to arbitrary functions
Interpositioning can occur at:
Compile time: When the source code is compiled
Link time: When the relocatable object files are statically linked to form
an executable object file
Load/run time: When an executable object file is loaded into memory,
dynamically linked, and then executed.

CORNELL CS4414 - SPRING 2023 49

1-2-3 RECIPE FOR INTERPOSITIONING

Given an executable that obtains something from a library.

Create a .o file that defines something, using the same API the
executable expected. Relink the executable against your .o file.

Now your implementation of something will be called

CORNELL CS4414 - SPRING 2023 50

1-2-3 RECIPE FOR INTERPOSITIONING

… but what if you wanted to call the standard something from
inside your replacement?

If it were to call something, that would just be a recursive call.

… So, have it call _something. This will be undefined… claim
that it is in a library

CORNELL CS4414 - SPRING 2023 51

1-2-3 RECIPE FOR INTERPOSITIONING

So now we have the original executable, and it calls your version
of something, which calls _something.

Create a new DLL library that defines _something. It calls the
original something, from the original DLL.

Now we have “wrapped” something!

CORNELL CS4414 - SPRING 2023 52

… SHORTCUT

There are also linker arguments you can use to just tell the linker
you wish to wrap some method.

Eliminates the need to create the extra helper DLL.

Time permitting, I’ll show you an example that wraps malloc

CORNELL CS4414 - SPRING 2023 53

SOME INTERPOSITIONING APPLICATIONS

Security
 Confinement (sandboxing)
 Behind the scenes encryption

Debugging
 In 2014, two Facebook engineers debugged a treacherous 1-year old bug in their iPhone
 app using interpositioning
 Code in the SPDY networking stack was writing to the wrong location
 Solved by intercepting calls to Posix write functions (write, writev, pwrite)

 Source: Facebook engineering blog post at:
 https://code.facebook.com/posts/313033472212144/debugging-file-corruption-on-ios/

CORNELL CS4414 - SPRING 2023 54

SOME INTERPOSITIONING APPLICATIONS

Monitoring and Profiling
 Count number of calls to functions
 Characterize call sites and arguments to functions
 Malloc tracing
 Detecting memory leaks
 Generating address traces

Changing a local resource into one accessed over a network

CORNELL CS4414 - SPRING 2023 55

EXAMPLE PROGRAM
Goal: trace the addresses and sizes of the
allocated and freed blocks, without
breaking the program, and without
modifying the source code.

Three solutions: interpose on the library
malloc and free functions at compile
time, link time, and load/run time.

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

int main(int argc,
 char *argv[])
{
 int i;
 for (i = 1; i < argc; i++) {
 void *p =
 malloc(atoi(argv[i]));
 free(p);
 }
 return(0);
} int.c

We won’t cover this example if we are short on time; it is not required and you won’t see questions about these slides on a quizCORNELL CS4414 - SPRING 2023 56

COMPILE-TIME INTERPOSITIONING
#ifdef COMPILETIME
#include <stdio.h>
#include <malloc.h>

/* malloc wrapper function */
void *mymalloc(size_t size)
{
 void *ptr = malloc(size);
 printf("malloc(%d)=%p\n", (int)size, ptr);

return ptr;
}

/* free wrapper function */
void myfree(void *ptr)
{
 free(ptr);
 printf("free(%p)\n", ptr);
}
#endif mymalloc.c

Time permitting CORNELL CS4414 - SPRING 2023 57

COMPILE-TIME INTERPOSITIONING
#define malloc(size) mymalloc(size)
#define free(ptr) myfree(ptr)

void *mymalloc(size_t size);
void myfree(void *ptr);

malloc.h

linux> make intc
gcc -Wall -DCOMPILETIME -c mymalloc.c
gcc -Wall -I. -o intc int.c mymalloc.o
linux> make runc
./intc 10 100 1000
malloc(10)=0x1ba7010
free(0x1ba7010)
malloc(100)=0x1ba7030
free(0x1ba7030)
malloc(1000)=0x1ba70a0
free(0x1ba70a0)
linux>

Search for <malloc.h> leads to

Search for <malloc.h> leads to
/usr/include/malloc.h

Time permitting CORNELL CS4414 - SPRING 2023 58

LINK-TIME INTERPOSITIONING
#ifdef LINKTIME
#include <stdio.h>

void *__real_malloc(size_t size);
void __real_free(void *ptr);

/* malloc wrapper function */
void *__wrap_malloc(size_t size)
{
 void *ptr = __real_malloc(size); /* Call libc malloc */
 printf("malloc(%d) = %p\n", (int)size, ptr);
 return ptr;
}

/* free wrapper function */
void __wrap_free(void *ptr)
{
 __real_free(ptr); /* Call libc free */
 printf("free(%p)\n", ptr);
}
#endif mymalloc.c

Time permitting CORNELL CS4414 - SPRING 2023 59

LINK-TIME INTERPOSITIONING

The “-Wl” flag passes argument to linker, replacing each comma with a
space.
The “--wrap,malloc ” arg instructs linker to resolve references
in a special way:
 Refs to malloc should be resolved as __wrap_malloc
 Refs to __real_malloc should be resolved as malloc

linux> make intl
gcc -Wall -DLINKTIME -c mymalloc.c
gcc -Wall -c int.c
gcc -Wall -Wl,--wrap,malloc -Wl,--wrap,free -o intl \
 int.o mymalloc.o
linux> make runl
./intl 10 100 1000
malloc(10) = 0x91a010
free(0x91a010)
. . .

Search for <malloc.h> leads to
/usr/include/malloc.h

Time permitting CORNELL CS4414 - SPRING 2023 60

#ifdef RUNTIME
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

/* malloc wrapper function */
void *malloc(size_t size)
{
 void *(*mallocp)(size_t size);
 char *error;

 mallocp = dlsym(RTLD_NEXT, "malloc"); /* Get addr of libc malloc */
 if ((error = dlerror()) != NULL) {
 fputs(error, stderr);
 exit(1);
 }
 char *ptr = mallocp(size); /* Call libc malloc */
 return ptr;
}

LOAD/RUN-TIME
INTERPOSITIONING

mymalloc.c

Observe that we DON’T have
#include <malloc.h>

Time permitting CORNELL CS4414 - SPRING 2023 61

LOAD/RUN-TIME INTERPOSITIONING

/* free wrapper function */
void free(void *ptr)
{

void (*freep)(void *) = NULL;
char *error;

 if (!ptr)
return;

 freep = dlsym(RTLD_NEXT, "free"); /* Get address of libc free */
 if ((error = dlerror()) != NULL) {
 fputs(error, stderr);
 exit(1);
 }
 freep(ptr); /* Call libc free */}
#endif

mymalloc.c

Time permitting CORNELL CS4414 - SPRING 2023 62

NOTE: DON’T CALL PRINTF IN MALLOC/FREE

We going overloading malloc…

… but this means that debugging our code using a printf
wouldn’t work: calling anything that does a malloc can cause a
recursion that wouldn’t terminate!

… printf(“something”) turns into std::cout << “something”, and
this in turn creates a std::string(“something”). Program crashes.

CORNELL CS4414 - SPRING 2023 63

LOAD/RUN-TIME INTERPOSITIONING

 The LD_PRELOAD environment variable tells the dynamic
linker to resolve unresolved refs (e.g., to malloc)by looking in
mymalloc.so first.
Type into (some) shells as:
env LD_PRELOAD=./mymalloc.so ./intr 10 100 1000)

linux> make intr
gcc -Wall -DRUNTIME -shared -fpic -o mymalloc.so mymalloc.c -ldl
gcc -Wall -o intr int.c
linux> make runr
(LD_PRELOAD="./mymalloc.so" ./intr 10 100 1000)
malloc(10) = 0x91a010
free(0x91a010)
. . .
linux>

Search for <malloc.h> leads to
/usr/include/malloc.h

Time permitting CORNELL CS4414 - SPRING 2023 64

INTERPOSITIONING RECAP

Compile Time
 Apparent calls to malloc/free get macro-expanded into calls to mymalloc/myfree
 Simple approach. Must have access to source & recompile

Link Time
 Use linker trick to have special name resolutions
 malloc __wrap_malloc
 __real_malloc malloc

Load/Run Time
 Implement custom version of malloc/free that use dynamic linking to load library
 malloc/free under different names
 Can use with ANY dynamically linked binary
env LD_PRELOAD=./mymalloc.so gcc –c int.c)

Time permitting CORNELL CS4414 - SPRING 2023 65

LINKING SUMMARY

Usually: Just happens, no big deal

But there are many sophisticated features and options!

When using these fancier options, expect strange errors
 Bad symbol resolution
 Ordering dependence of linked .o, .a, and .so files

For power users, it takes effort but then you can do:
 Interpositioning to trace programs with & without source

CORNELL CS4414 - SPRING 2023 66

	Linking… How Basic Mechanisms enable sophisticated wrappers
	Systems Programming is about taking control over everything
	Core scenario – Part I
	Core scenario – Part II
	Idea Map For Today
	Linking
	Example C Program (C++ is the same)
	Linking
	Why Linkers? Reason 1: Modularity
	an object file is an intermediate form
	Two forms of addressing
	Which does it pick?
	Reason 2 for linkings: Libraries
	Reason 2: Libraries
	How linking works: Symbol resolution
	… three cases
	Symbols in Example C Program
	Linkers can “move things around”. We call this “relocation”
	Object File Format (ELF)
	Example of Symbol Resolution
	Symbol Identification
	Local Symbols
	How Linker Resolves Duplicate Symbol Definitions
	Linker with multiple weak declarations
	Global Type Mismatches cause bugs
	Static Libraries
	Commonly Used Libraries
	Linking with Static Libraries
	Linking with Static Libraries
	Using Static Libraries
	Shared Libraries
	Shared Libraries
	Dynamic Library Example
	Dynamic Linking at Load-time
	for Dynamic linking, relocation occurs at runtime
	Reminder: Mmapped file
	Steps in DLL loading
	… steps in dll loading as graphic
	… steps in dll loading as graphic
	… steps in dll loading as graphic
	… steps in dll loading as graphic
	When fwrite is invoked…
	Why did we save memory?
	How does the C++ compiler know that fwrite(…) will live in a DLL?
	Gcc options used here
	Dynamic Linking at Run-time
	Runtime errors
	Linking Summary	
	Getting very fancy: Library Interpositioning (for serious hackers!)
	1-2-3 Recipe for Interpositioning
	1-2-3 Recipe for Interpositioning
	1-2-3 Recipe for Interpositioning
	… shortcut
	Some Interpositioning Applications
	Some Interpositioning Applications
	Example program		
	Compile-time Interpositioning
	Compile-time Interpositioning
	Link-time Interpositioning
	Link-time Interpositioning
	Load/Run-time �Interpositioning
	Load/Run-time Interpositioning
	Note: Don’t call printf in malloc/free
	Load/Run-time Interpositioning
	Interpositioning Recap
	Linking summary

