
C DEFINES AND C++ TEMPLATES Professor Ken Birman
CS4414 Lecture 10

CORNELL CS4414 - SPRING 2023 1

COMPILE TIME “COMPUTING”

In lecture 9 we learned about const, constexpr and saw that
C++ really depends heavily on these
 Ken’s solution to word count runs about 10% faster with extensive
 use of these annotations
 Constexpr underlies the “auto” keyword and can sometimes eliminate
 entire functions by precomputing their results at compile time.
 Parallel C++ code would look ugly without normal code modularity
 and structuring. Const and constexpr allow the compiler to recognize
 parallelizable logic that would otherwise have to be SISD code.

CORNELL CS4414 - SPRING 2023 2

… BUT HOW FAR CAN WE TAKE THIS IDEA?

Today we will look at the concept of programming the compiler
using the templating layer of C++

We will see that it is a powerful tool!

There are also programmable aspects of Linux, and of the
modern hardware we use. By controlling the whole system, we
gain speed and predictability while writing elegant, clean code.

CORNELL CS4414 - SPRING 2023 3

IDEA MAP FOR TODAY

CORNELL CS4414 - SPRING 2023 4

We have seen a number of parameterized
types in C++, like std::vector and std::map

These are examples of “templates”.
They are like generics in Java

Templates are easy to create, if you stick to basics

The big benefit compared to Java is that a template
is a compile-time construct, whereas in Java a generic
is a run-time construct.

History of generics: #define in C

The template language is Turing-complete, but computes
only on types, not data from the program (even when
constants are provided).

WE ARE GOING TO BRIEFLY STEP
“BACKWARDS” IN TIME
In the Monday lecture we already started to see templates and
auto and const/constexpr.

Put that to the side for a moment. To see how templates evolved
in the form they have in C++, it makes sense to trace the history
of their evolution.

This will take us back to the “pre-C++” era, for a few slides.
CORNELL CS4414 - SPRING 2023 5

CONCEPT OF A GENERIC OR TEMPLATE

A class that can be specialized by providing element types as
class arguments.

For example, “a list of pets” or “a map from strings to counters”

This separates the abstraction the class implements from the
specific types of objects it manages.

CORNELL CS4414 - SPRING 2023 6

EARLY HISTORY OF GENERICS

Many trace their roots to C, the original language introduced
with Unix (which was the original Linux)

C++ still has C as a subset… C++ will compile a C program.

But C lacked classes, so object oriented coding was infeasible

CORNELL CS4414 - SPRING 2023 7

C FILE INCLUSION

#include “file”. This says “track down the file, and substitute its
contents into my code at this spot.”

There are two notations: “filename” and <filename>. The one
with quotes searches for that exact file. The <…> notation is
for predefined C++ headers or C headers.

With < … > often you don’t even need to specify .h versus .hpp
CORNELL CS4414 - SPRING 2023 8

C MACRO SUBSTITUTION

The most basic option just defines a replacement rule:

 #define SOMETHING something-else

But this wasn’t enough, and people added parameters

 #define SOMETHING(x) something-else that uses x

CORNELL CS4414 - SPRING 2023 9

EXAMPLES

Examples using #define

 #define OPT1 0x00001

 #define MAXD 1000

 #define SIGN(x) (x < 0: -1: 1)

 #define ERRMSG(s) { if(DEBUGMODE) printf(s); }

CORNELL CS4414 - SPRING 2023 10

ONE USE OF #DEFINE(T) WAS FOR TYPES

Allows a library method to be specialized for a single type. But
C code gets confusing if #define(T) is “respecialized” for
multiple uses in different places.

There is a way to redefine a # define, like first have “T” be Pets
and then later have it be Deserts, but it leads to strange bugs

CORNELL CS4414 - SPRING 2023 11

OTHER ADVANCED FEATURES OF C
PREPROCESSORS
#if, #else/#elif, #endif offer some limited compile-time control.

The “dead code” vanishes, and the compiler never even sees it.

Typical uses: compile one version of the code if the computer has
a GPU, a different version if it lacks a GPU. Or have
debugging logic that vanishes when we aren’t testing.

CORNELL CS4414 - SPRING 2023 12

… BUT THEY ARE TOO LIMITED

As noted, we couldn’t create a type that can be parameterized
with types of objects using it, or that it holds.

And we can’t reason about types in #if statements, which have
very limited conditional power.

All of these limitations frustrated C users.

CORNELL CS4414 - SPRING 2023 13

WHILE ALL OF THIS WAS PLAYING OUT,
LANGUAGES BECAME OBJECT ORIENTED

Java was the first widely successful OO language, but in fact there
were many prior attempts. Java used pragmas and annotations
for some roles “similar” to what C did with #define, #if, etc.

A very large community began to use objects… but early decisions
resulted in runtime reflection overheads (discussed previously)!

CORNELL CS4414 - SPRING 2023 14

JAVA POLYMORPHISM

Allows a single method with a single name to have varying
numbers of arguments, and varying argument types.

The compiler had the task of matching each invocation to one of
the polymorphic variants.

CORNELL CS4414 - SPRING 2023 15

JAVA GENERICS

In the early versions of Java, a class such as list or a hash map would
just treat the values as having “object type”.

This, though, is impossible to type check: “is this a list that only includes
animals that can bark, or might it also have other kinds of animals on it,
or even non-animals?”

Java generics solved that problem, but Java retained the older form
of unresolved object types as a form of legacy.

CORNELL CS4414 - SPRING 2023 16

THE POWER OF GENERICS

In fact Java’s generics are amazingly powerful.

You can literally load a Java JAR file, see if it implements class List
with objects that all support operations Bark, Sit, LieDown, etc, and if
so, call them.

This is done using runtime reflection in which a program can take a
reference to a class (even one loaded from a JAR file) and
enumerate over the variables, types and methods it defines

CORNELL CS4414 - SPRING 2023 17

THE ISSUE WITH JAVA GENERICS

The language never eliminated the universal “object” class,
which is the common supertype for all the more specific Java
classes.

As a result, Java needed an instanceof test, as well as other
features, so that the runtime can figure out what types of objects
it is looking at (for runtime type checking) and also which
method to call (for polymorphic method invocations)

CORNELL CS4414 - SPRING 2023 18

C++ TEMPLATE GOALS

When C++ was designed, the owners of its template
architecture were aware of the C and Java limitations.

They wanted to find a “pure” way to express the same concepts
while also programming in an elegant, self-explanatory way,
and they wanted to do this without loss of performance.

CORNELL CS4414 - SPRING 2023 19

TEMPLATES AND POLYMORPHISM IN C++

Polymorphic method calls, but resolved at compile time. Extensible
classes, but flexible and able to look at object types and generate
different logic for different types.

C++ lacks the equivalent of the Java run-time “instanceof”.
 It does have a compile-time instanceof.
 In C++ all types are fully resolved at compile time.
 Every C++ object has a single and very specific type

CORNELL CS4414 - SPRING 2023 20

TEMPLATES AND POLYMORPHISM IN C++

… in fact, even polymorphism in C++ is resolved at compile
time!

C++ is always able to identify the specific method instance to
call.

C++ even dynamically loads libraries without worrying that
somehow the library methods won’t be what it expects.

CORNELL CS4414 - SPRING 2023 21

TEMPLATES AND POLYMORPHISM IN C++

… but there is one powerful feature that is very much “like”
runtime polymorphism: inheritance of “fully virtual classes”

In C++ we often define a virtual class that describes a standard
set of methods shared across some set of different classes. So
for example, IBark could be an interface shared by “animals
that know how to bark”, with a method “bark”.

CORNELL CS4414 - SPRING 2023 22

INTERFACE CLASSES IN C++

For example:

CORNELL CS4414 - SPRING 2023 23

class shape // An interface class
{
 public:
 virtual ~shape();
 virtual void move_x(int& x) = 0;
 virtual void move_y(int& y) = 0;
 virtual void draw() = 0;
//...
};

class line : public shape
{
 public:
 virtual ~line();
 virtual void move_x(int& x); // implements move_x
 virtual void move_y(int& y); // implements move_y
 virtual void draw(); // implements draw
 private:
 point end_point_1, end_point_2;
//...
};

INTERFACE CLASSES IN C++

For example:

CORNELL CS4414 - SPRING 2023 24

class shape // An interface class
{
 public:
 virtual void move_x(int) = 0;
 virtual void move_y(int) = 0;
 virtual void draw() = 0;
//...
};

class line : public shape
{
 public:
 ~line();
 virtual void move_x(int); // implements move_x
 virtual void move_y(int); // implements move_y
 virtual void draw(); // implements draw
 private:
 point end_point_1, end_point_2;
//...
};

Says that any class inheriting the shape
interface must define this method.

Some developers prefer names like
IShape but in fact, there is no rule

Tells C++ that this is “supposed to match” a
virtual method inherited from some other

class (in our case, from “shape”)

We are looking at line.hpp, which has the type
signature but not the implementation. Line.cpp is

required to implement line::move_x(int x), etc.

Extra methods are allowed, like this
destructor

THESE FULLY VIRTUAL CLASSES ARE
INHERITED BY CONCRETE CLASSES

A class like Dog would inherit a fully virtual class like IBark.

Dog is required to provide implementations (code bodies) for
the virtual IBark methods that had = 0.

CORNELL CS4414 - SPRING 2023 25

YOU CAN TEMPLATE AN INTERFACE!

The syntax is just like a template for any other class.

This allows a very powerful form of runtime polymorphism

CORNELL CS4414 - SPRING 2023 26

TEMPLATES ALSO HAVE A FORM OF COMPILE-
TIME “INSTANCEOF” FEATURE
You can check to see if a type has some specific characteristic and
generate code conditional on that.

For example, a template could check to see if the given type
supports IBark and if so, call the bark method. But then if not, it
could check for IPurr. And then for IChirp…

This all occurs when the template is “instantiated” at compile time

CORNELL CS4414 - SPRING 2023 27

HOW WOULD WE USE THIS?

One use is to create a template that treats native types
differently than class types and structs

Template code can also emit type-specific C++ logic, and we
will see this when we look at printf in a few minutes

CORNELL CS4414 - SPRING 2023 28

C++ TEMPLATES

Botton line: they can do everything Java generics can do, but at
compile time, and also cover defines, varargs, etc.

To some degree they can specialize the code emitted based on the
object or data types used to parameterize the template

We will start with simpler cases that you might often want to use,
then will just “skim” the fancier things seen in C++ libraries, but that
normal mortals don’t normally need to actually do.

CORNELL CS4414 - SPRING 2023 29

SUMMARY OF TEMPLATE GOALS

Compile time type checking and type-based specialization.

A way to create classes that are specialized for different types

Conditional compilation, with dead code automatically removed

Code polymorphism and varargs without runtime polymorphism

CORNELL CS4414 - SPRING 2023 30

C++ ADVANTAGE?

It centers on the compile-time type resolution. Impact? The resulting
code is blazingly fast.

In fact, C++ wizards talk about the idea that at runtime, all the
fancy features are gone, and we are left with “plain old data” and
logic that touches that data mapped to a form of C.

The job of C++ templates is to be as expressive as possible without
ever requiring any form of runtime reflection.

CORNELL CS4414 - SPRING 2023 31

THE BASIC IDEA IS EXTREMELY SIMPLE

As a concept, a template could not be easier to understand.

Suppose we have an array of objects of type int:
 int myArray[10];

With a template, the user supplies a type by coding something like
Things<long>. Internally, the class might say something like:
 template<Typename T>
 T myArray[10];

CORNELL CS4414 - SPRING 2023 32

THE BASIC IDEA IS EXTREMELY SIMPLE

As a concept, a template could not be easier to understand.

Suppose we have an array of objects of type int:
 int myArray[10];

With a template, the user supplies a type (T) and we express this by
just coding:
 T myArray[10];

CORNELL CS4414 - SPRING 2023 33

T behaves like a variable, but the “value” is
some type, like int or Bignum

YOU CAN ALSO TEMPLATE A CLASS

template<typename T>
class Things {

 T myArray[10];
 T getElement(int); // People often index by
 void setElement(int,T&); // a constant, hence not int&
}

CORNELL CS4414 - SPRING 2023 34

AND CAN EVEN SUPPLY A CONSTANT

template<class T, const int NElems>
class Things {

 T myArray[NElems];
 T getElement(int); // People often index by
 void setElement(int,T&); // a constant, hence not int&

}

CORNELL CS4414 - SPRING 2023 35

TEMPLATED FUNCTIONS

Templates can also be associated with individual functions. The
entire class can have a type parameter, but a function can have
its own (perhaps additional) type parameters

Template<typename T>
T max(T a, T b) // Again, not T& to allow caller to provide a constant
{
 return a>b? a : b; // T must support a > b

}

CORNELL CS4414 - SPRING 2023 36

This really should require that T be a type
supporting “comparable”. We’ll see how to

specify that restriction in a moment.

FUNCTION TEMPLATES

Nothing special has to be done to use a function template

cout is templated. The type is automatically inferred by C++

int main(int argc, char* argv[]) {
 int a = 3, b = 7;
 double x = 3.14, y = 2.71;

 cout << max(a, b) << endl; // Instantiated with type int
 cout << max(x, y) << endl; // Instantiated with type double
 cout << max(a, x) << endl; // ERROR: types do not match, can’t
 // infer which to use (float or int)
}

CORNELL CS4414 - SPRING 2023 37

You can instantiate the same templated
class with different types

template <class T>
class myarray {
private:
 T* v;
 int sz;
public:
 myarray(int s) { v = new T [sz = s]; } // Constructor
 myarray(const myarray& b) { v = b.v; sz = b.sz; }// Copy constructor
 ~myarray() { delete[] v; } // Destructor
 T& operator[] (int i) { return v[i]; }
 size_t size() { return sz; }
};

CLASS TEMPLATES

myarray<int> intArray(10);
myarray<shape> shapeArray(10);

CORNELL CS4414 - SPRING 2023 38

You can instantiate the same templated
class with different types

template <class T>
class myarray {
private:
 T* v;
 int sz;
public:
 myarray(int s) { v = new T [sz = s]; } // Constructor
 myarray(const myarray& b) { v = b.v; sz = b.sz; }// Copy constructor
 ~myarray() { delete[] v; } // Destructor
 T& operator[] (int i) { return v[i]; }
 size_t size() { return sz; }
};

CLASS TEMPLATES

myarray<int> intArray(10);
myarray<shape> shapeArray(10);

Syntax is fine, but gives a compilation error: int is
a type, but it is not a class type (not a C++ object)

Developer of this class wanted T to be a class type
(not a base type like int, double, etc)

CORNELL CS4414 - SPRING 2023 39

TEMPLATE TYPES CAN BE “CONSTRAINED”

Suppose that we want to build a template for a class with a
method “speak()” that calls “bark()”.

Dogs and seals bark. Cats do not. So we might want to restrict
our template type:

 template<typename T> requires T instanceof(IBark)

CORNELL CS4414 - SPRING 2023 40

TEMPLATE TYPES CAN BE “CONSTRAINED”

We might even want to implement a given function in a different
way for different types of objects. You could do this using
instanceof “inline” in your code, but it is handled at compile time.

This rule introduces some complications.

C++ has many options; we will just look at one of them. See
https://en.cppreference.com/w/cpp/language/constraints

CORNELL CS4414 - SPRING 2023 41

REQUIRES

This clause allows you to say that the template type must
implement some interface.

This says that the template is only valid for classes that define
equality testing, or for types that are “aliases” of the void type.

CORNELL CS4414 - SPRING 2023 42

template<typename T> requires EqualityComparable<T> || Same<T, void>

https://en.cppreference.com/w/cpp/language/constraints

FANCIER: A C++ “TEMPLATED TYPE
CONCEPT”
A concept is a compile-time type test, part of the templating
“language” in C++. Useful in “requires” clauses.

For type T, this example defines “EqualityComparable to mean
“implements the operators == and !=“.

CORNELL CS4414 - SPRING 2023 43

template<typename T>
concept EqualityComparable = requires(T a, T b) {
 { a == b } -> std::boolean;
 { a != b } -> std::boolean;
};

TYPEDEF

Templated types with optional fields can become quite
complicated. Typedef allows you to give a short name to a
type that might otherwise require a long name.

Examples:
 typedef vector<int> VecInt;
 typedef map<string, tuple<double, int, float, MyClass> > MyTuple;

CORNELL CS4414 - SPRING 2023 44

THE MOST COMMON CASE FOR “USING”

This keyword says that your code is “importing” names from a
namespace or class that is already defined.

For example “using std” would eliminate the need to write std::cout

But Ken isn’t fond of using for std:: or even for its members like
std::map. Code can become confusing for a reader unfamiliar with
the package you are using.

CORNELL CS4414 - SPRING 2023 45

USING CAN ALSO PLAY THE ROLE OF TYPEDEF

Syntax is “using name = type;” Often useful in a template!

But poor style to replace “typedef” with “using” in a cpp file.

(1) template < template-parameter-list > // In an hpp file, common
 using name = type ;

(2) using name = type ; // In a cpp file, deprecated

CORNELL CS4414 - SPRING 2023 46

VARIABLE ARGUMENT LISTS

Methods with variable numbers of arguments are also a
traditional source of “confusion” in strongly typed languages.

In C, there are many methods like printf:

 printf(“In zipcode %5d, today’s high will be %5.1f\n”,
 local_zipcode, local_temperature);

… notice that the format expects specific types of arguments!

CORNELL CS4414 - SPRING 2023 47

VARARGS ARE HARD TO TYPE CHECK

In Java, varargs can easily be supported using object type, and
there are standard ways to iterate over the arguments supplied

But this means we are forced to do runtime type checking later,
when trying to “do something” to those objects, like convert to a
string for printing.

C++ wanted this same power with strong compile-time typing
CORNELL CS4414 - SPRING 2023 48

… IN C, THIS CAN SIMPLY RESULT IN BUGS

If the temperature passed to this printf, in C, is of type int or
some form of low-precision float type, printf will just print a
nonsense output.

The C++ designers wanted generics to also address this issue,
and they came up with an insane concept (that works): one
version of printf (or whatever) for every sequence of types
actually used in the code. Polymorphism to the max!

CORNELL CS4414 - SPRING 2023 49

WHAT???

Consider this case:

… C has many other methods like this, including ones that arise
in totally different situations (for example to handle networking
addresses, which come in many flavors, like IPv4 versus IPv6).

CORNELL CS4414 - SPRING 2023 50

printf(“%d,%f,%d,%s\n”, 2, 3.0, 4, “5.7”);

WHAT???

The idea in C++ was to allow such things, but “translate” them
to runtime code that has one version of the method (printf, in our
example) for each type actually used:

 printf(char *format, int i0, float f0, int i1, char* s0) { … }

 printf(char *format’, float f0, int i1, char* s0) { … }

 printf(char *format’’, int i1, char* s0) { … }

CORNELL CS4414 - SPRING 2023 51

printf(“%d,%f,%d,%s\n”, 2, 3.0, 4, “5.7”);

WASTE OF SPACE?

Computers have a lot of memory, and you aren’t likely to really
use a million permutations of types. Code is fairly compact.

So they concluded that no, this won’t waste space. And it does
allow for very effective type checking, at compile time!

CORNELL CS4414 - SPRING 2023 52

VARIADIC TEMPLATES

The idea is a bit “brain bending”!

But this feature is a form of compile-time recursion in the template
language system, and it allows you to handle variable argument lists
with different types for each item.

For printf: we end up with a series of printf calls, each for a single
argument. The “remaining arguments” are dealt with recursively.

CORNELL CS4414 - SPRING 2023 53

SAFE_PRINTF (BASE CASE ON LEFT, RECUSIVE ON RIGHT)

CORNELL CS4414 - SPRING 2023 54

// In the .hpp file, this comes first, so that
// C++ will know how to compile the “lone” call to
// safe_printf with no arguments, when it sees it.
void safe_printf(const char *s)
{
 // We processed all the arguments, scan remainder
 while (*s) {
 if (*s == '%') {
 if (*(s + 1) == '%') {
 ++s;
 }
 else {
 throw "invalid format: missing arguments";
 }
 }
 std::cout << *s++;
 }
}

template<typename T, typename... Args>
void safe_printf(const char *s, T& value, Args... args)
{
 while (*s) { // Scan up to the next format item
 if (*s == '%’) { // found it
 if (*(s + 1) == '%') {
 ++s;
 }
 else { // Really should check that *s matches T…
 std::cout << value;
 // call even when *s == 0 to detect extra arguments
 safe_printf(s + 1, args...);
 return;
 }
 }
 std::cout << *s++; // Output text part of the format
 }
 throw "extra arguments provided to printf";
}

Base Case Recursive Case

Only these lines “generate code”!

SAFE_PRINTF (BASE CASE ON LEFT, RECUSIVE ON RIGHT)

CORNELL CS4414 - SPRING 2023 55

// In the .hpp file, this comes first, so that
// C++ will know how to compile the “lone” call to
// safe_printf with no arguments, when it sees it.
void safe_printf(const char *s)
{
 // We processed all the arguments, scan remainder
 while (*s) {
 if (*s == '%') {
 if (*(s + 1) == '%') {
 ++s;
 }
 else {
 throw "invalid format: missing arguments";
 }
 }
 std::cout << *s++;
 }
}

template<typename T, typename... Args>
void safe_printf(const char *s, T& value, Args... args)
{
 while (*s) { // Scan up to the next format item
 if (*s == '%’) { // found it
 if (*(s + 1) == '%') {
 ++s;
 }
 else { // Really should check that *s matches T…
 std::cout << value;
 // call even when *s == 0 to detect extra arguments
 safe_printf(s + 1, args...);
 return;
 }
 }
 std::cout << *s++; // Output text part of the format
 }
 throw "extra arguments provided to printf";
}

Base Case Recursive Case

Only these lines “generate code”!

KEY TO UNDERSTANDING THIS TEMPLATE

It creates a whole series of “safe_printf” calls, each calling the
next one, for use with this specific sequence of types

CORNELL CS4414 - SPRING 2023 56

template<typename T, typename... Args>
void safe_printf(const char *s, T& value, Args... args)
{
 …
 std::cout << value; // At this point C++ “knows” value is of type T!
 safe_printf(s + 1, args...); // We’ve removed one argument
 …
}

KEY TO UNDERSTANDING THIS TEMPLATE

It creates a whole series of “safe_printf” calls, each calling the
next one, for use with this specific sequence of types

CORNELL CS4414 - SPRING 2023 57

template<typename T, typename... Args>
void safe_printf(const char *s, T& value, Args... args)
{
 …
 std::cout << value; // At this point C++ “knows” value is of type T!
 safe_printf(s + 1, args...); // We’ve removed one argument
 …
}

Template expansion will replace these with a
series of properly typed parameters, each with an
automatically generated name

KEY TO UNDERSTANDING THIS TEMPLATE

It creates a whole series of “printf” methods, each calling the
next one, for use with this specific sequence of types

CORNELL CS4414 - SPRING 2023 58

template<typename T, typename... Args>
void safe_printf(const char *s, T& value, Args... args)
{
 …
 std::cout << value; // At this point C++ “knows” value is of type T!
 safe_printf(s + 1, args...); // We’ve removed one argument
 …
}

Template expansion will replace these a list of
those automatically generated variable names

HOW DOES THIS EXPAND?

A call to safe_printf(“%d,%s,%f”, n, s, f):

CORNELL CS4414 - SPRING 2023 59

safe_printf(char* format, int __a0, char* __a1, float __a2)

safe_printf(char* format, char* __a1 , float __a2)

safe_printf(char* format, float __a2)

safe_printf(char* format)

std::cout to print __a0 (format %d), then calls safe_printf(“,%s,%f”,
__a1, __a2)

prints __a1 (format %d), then calls safe_printf(“,%f”, __a2)

prints __a2 (format %f), then calls safe_printf(“”)

EVEN STD::COUT IS A TEMPLATE!

It expands to something like this:

 outbuf[optr++] = c;
 if (c == ‘\n’) {
 write(stdout, outbuf, optr);
 optr = 0;
 }

… and this “if” statement can be constexpr evaluated too

CORNELL CS4414 - SPRING 2023 60

PRINTF(“%D,%F,%D,%S\N”, 2, 3.0, 4, “5.7”);

... will be transformed to

 outbuf[optr++] = ‘2’;
 outbuf[optr++] = ‘,’;
 outbuf[optr++] = ‘3’;
 …
 outbuf[optr++] = ‘\n’;
 write(stdout, outbuf, optr);
 optr = 0;

CORNELL CS4414 - SPRING 2023 61

PRINTF(“%D,%F,%D,%S\N”, 2, 3.0, 4, “5.7”);

… Or even (because optr was initially 0):

 outbuf[0] = ‘2’;
 outbuf[1] = ‘,’;
 outbuf[2] = ‘3’;
 …
 outbuf[16] = ‘\n’;
 write(stdout, outbuf, 15);

CORNELL CS4414 - SPRING 2023 62

memcpy(outbuf, “2, 3.0, 4, 5.7\n”, 15);

C++ can statically combine these…

… but can’t eliminate outbuf: We know
it is temporary, but the compiler “worries”
that it might be aliased and used elsewhere
in the program

WHAT ABOUT CHECKING THE FORMAT
AGAINST THE ARGUMENT TYPES?

This template actually has extra code to type-check the
arguments. It can verify that the type matching %d is int, etc.

I didn’t show that code because it made the slide a bit bloated
and uses advanced features that only arise when building very
fancy templated methods (common in std but not in applications)

CORNELL CS4414 - SPRING 2023 63

CONDITIONAL COMPILATION

C++ offers several ways to get the behavior of #if…#endif

(1) With a constant variable, the compiler will do constant
 expression evaluation of if(HAS_GPU) { … } and can trim
 any “dead” code paths
(2) The templating mechanism has a way to test types at
 compile time, and can output different code blocks for
 different types (type traits, concepts)

CORNELL CS4414 - SPRING 2023 64

THE C++ TEMPLATE LANGUAGE IS TURING
COMPLETE!
In theory, any program you could write and run on any computer
can be “recoded” as a template and executed at compile time!

In practice… that might not work very well! For one thing, the
C++ template processor is a very slow Turing machine!

CORNELL CS4414 - SPRING 2023 65

MOST COMMON COMPLAINT?

Template programming is challenging to learn
 This recursive compile-time language doesn’t resemble C++
 (it looks more like Haskell)
 C++ compile-time error messages are bizarre because fully
 expanded types can be really hard to make sense of
 Compilation of a templated C++ program requires many
 passes and helper files, to avoid creating multiple instances
 of the same procedure with the same argument types.

CORNELL CS4414 - SPRING 2023 66

SUMMARY

Template programming allows for the abstraction of types

C++ templates are an instantiation of generic programming

C++ has function templates and class templates

Templates have many uses and allow for very interesting code
design. An entire “compile time language”, similar in style to
Haskell (a functional language), extremely elaborate.

CORNELL CS4414 - SPRING 2023 67

SUMMARY

More broadly, templates and const/constexpr tie to the idea of
conceptual abstractions.

These tools let us control elements of the environment: the way our
code will be transformed into executable logic. Linux has many other
programmable components, and this idea is pervasive.

As a systems programmer, this idea of programmable control is a
central concept you will use again and again.

CORNELL CS4414 - SPRING 2023 68

	C Defines and C++ Templates
	Compile time “computing”
	… but how far can we take this idea?
	Idea Map For Today
	We are going to briefly step “backwards” in time
	Concept of a generic or template
	Early history of Generics
	C file inclusion
	C macro substitution
	Examples
	One use of #define(T) was for types
	Other advanced features of C Preprocessors
	… but they are too limited
	While all of this was playing out, languages became object oriented
	Java polymorphism
	Java Generics
	The power of generics
	The issue with Java Generics
	C++ Template goals
	Templates and Polymorphism in C++
	Templates and Polymorphism in C++
	Templates and Polymorphism in C++
	Interface classes in C++
	Interface Classes in C++
	These Fully virtual classes are inherited by concrete classes
	You can template an Interface!
	Templates also have a form of compile-time “instanceof” feature
	How would we use this?
	C++ templates
	Summary of template goals
	C++ advantage?
	The basic idea is extremely simple
	The basic idea is extremely simple
	You can also template a class
	And can even supply a constant
	Templated functions
	Function Templates
	Class Templates
	Class Templates
	Template types can be “constrained”
	Template types can be “constrained”
	Requires
	Fancier: a C++ “Templated type concept”
	Typedef
	The most common case for “using”
	Using can also play the role of typedef
	variable argument lists
	Varargs are hard to type check
	… in C, this can simply result in bugs
	What???
	What???
	Waste of space?
	Variadic templates
	safe_printf (base case on left, recusive on right)
	safe_printf (base case on left, recusive on right)
	Key to understanding this template
	Key to understanding this template
	Key to understanding this template
	How does this expand?
	Even std::cout is a template!
	printf(“%d,%f,%d,%s\n”, 2, 3.0, 4, “5.7”);
	printf(“%d,%f,%d,%s\n”, 2, 3.0, 4, “5.7”);
	What about checking the format against the argument types?
	Conditional compilation
	The C++ template language is turing complete!
	Most common complaint?
	Summary
	Summary

