
CONSTANT EXPRESSIONS IN C++ Professor Ken Birman
CS4414 Lecture 9

CORNELL CS4414 - SPRING 2023 1

IDEA MAP FOR TODAY

CORNELL CS4414 - SPRING 2023 2

Many things can be “precomputed”. In C++ these
include the loop bounds we saw in lecture 8, the types

used in “auto” declarations, and code-inlining and refactoring

The C++ compiler is especially famous for this

Why is this technique so valuable? How do other languages handle the same issue?

Keywords: const, constexpr, consteval

CONNECTION TO CONCEPTUAL ABSTRACTION

As we saw in prior lectures, abstract thinking isn’t limited just to
designing ADTs and modules implementing data structures

Dijkstra taught us to think about abstractions that might span
entire layers of the operating system (like file systems). We have
seen how by understanding those abstractions, we gain valuable
forms of control. Constexpr is an abstract tool, too!

CORNELL CS4414 - SPRING 2023 3

HOW DO PROGRAMS IN C OR C++ BECOME
EXECUTABLES?
Languages like Python and Java are highly portable. They
compile to byte code… Java does “just in time” compilation to
machine code. A JIT or interpreter must be rapid.

In contrast, C++ is compiled using an optimization-driven model:
on this architecture, what is the best way to turn your code into
machine instructions? It is willing to spend a lot of time during
compilation to reduce delay at runtime.

CORNELL CS4414 - SPRING 2023 4

In fact, let’s look at an example:

fibonacci(n) computes the n’th
fibonacci integer

0 1 1 2 3 5 8 13 21 ….

In fact, let’s look at an example:

fibonacci(n) computes the n’th
fibonacci integer

0 1 1 2 3 5 8 13

CONSIDER THE HUMBLE PROCEDURE CALL…

CORNELL CS4414 - SPRING 2023 5

int fibonacci(int n)
{
 if(n <= 1)
 return n;
 return fibonacci(n-1)+fibonacci(n-2);
}

21 = 8 + 13

… FIBONACCI IS THE MOST FAMOUS
EXAMPLE OF RECURSION
When first introduced to recursion, many students are confused
because
1. The method is invoking itself,
2. The variable n is being used multiple times in different ways,
3. We even call fibonacci twice in the same block!

Over time, you learn to think in terms of “scope” and to view each
instance as a separate scope of execution.

CORNELL CS4414 - SPRING 2023 6

WHERE IS FIBONACCI PROCESSED?

In the case of Java or Python, we would know that Fibonacci is
performed at runtime, and we learn all about the costs (will
review these costs in a moment).

But the bottom line is: The function is translated to a highly
efficient data structure (Python) or intermediate code that maps
to instructions (Java), then this logic is interpreted or executed.

CORNELL CS4414 - SPRING 2023 7

WHERE IS FIBONACCI PROCESSED?

In C++ there are several possible answers.

The compiler generates any required code but with a more
complete analysis: Python and Java types cannot be fully known
until runtime, whereas C++ types are known at compile time.

But there are also cases where less code or no code is needed!

CORNELL CS4414 - SPRING 2023 8

… DOES N NEED A MEMORY LOCATION?

Where does the memory for argument n reside? In Java or Python,
n resides on the stack. Each time fibonacci is called:
 Push any registers to the stack, including the return PC
 Push arguments (in our case, the current value of n)
 Jump to fibonacci, which allocates space on the stack for local
 variables (in our case there aren’t any), and executes
 When finished, fibonacci pops the PC and returns to the caller
 The caller code pops data it pushed (and perhaps also the result)

CORNELL CS4414 - SPRING 2023 9

FIBONACCI(5)

CORNELL CS4414 - SPRING 2023 10

int fibonacci(int n)
{
 if(n <= 1)
 return n;
 return fibonacci(n-2)+fibonacci(n-1);
}

fibonacci(5) = fibonacci(3)+Fibonacci(4)
fibonacci(4) = fibonacci(2)+Fibonacci(3)
fibonacci(3) = fibonacci(1)+Fibonacci(2)
fibonacci(2) = fibonacci(0)+Fibonacci(1)
fibonacci(1) = 1
Fibonacci(0) = 1

Due to repeatitive pattern, requires 15 calls to Fibonacci!

COMMON OPTIMIZATION

In CS2110 we teach about caching (memoization). But a
compiler would not automate this solution: it “changes the code”

CORNELL CS4414 - SPRING 2023 11

int fibonacci(n)
{
 if(n <= 1)
 return n;
 if(!known_results.contains(n)) {
 known_results[n] = fibonacci(n-1)+fibonacci(n-2);
 }
 return known_results[n];
}

WITHOUT MEMOIZATION, WHERE IS TIME
BEING SPENT?
How many instructions really relate to computing fibonacci?

We have an if statement: a comparison (call it
compare “a and b”) then branch “if a >= b”.

Two recursive calls, one addition, then return.

CORNELL CS4414 - SPRING 2023 12

2

1

2 * ? + 1 + 1

THE COST OF THE RECURSIVE CALLS?

They each
 Push registers. Probably 1 is in use.

 Push arguments. In our case, value of n.

 Push the return PC, jump to fibonacci

 After the call, we need to pop the arguments
 and also pop the saved registers.

CORNELL CS4414 - SPRING 2023 13

1

1

2

2

2 * ? + 1 + 1

… NOW WE CAN FILL IN THE “?” WITH 6

How many instructions really relate to computing fibonacci?

We have an if statement: a comparison (call it
compare “a and b”) then branch “if a >= b”.

Two recursive calls, one addition, then return.

CORNELL CS4414 - SPRING 2023 14

2

1

2 * 6 + 2 + 1

HOW MANY INSTRUCTIONS TO PUSH AND
POP ARGUMENTS?
About 15 instructions per call to fibonacci. Of these, 1 is the actual
addition operation, and the others are “housekeeping”

For example: fibonacci(5)=0…1…1…2…3…5

Our code needs to do the required 5 additions. However, to
compute it we will do 15 recursive calls at a cost of about 15
instructions each: 255 instructions… 51x slower than ideal!

CORNELL CS4414 - SPRING 2023 15

SOME QUESTIONS WE CAN ASK

When C++ creates space for us to hold n on the stack, why is it
doing this?

We should have a copy of n if we will make changes, but then
would want them discarded, or perhaps if the caller might be
running a concurrent thread that could make changes to n “under
our feet” (if the caller is spawning concurrent work).

But Fibonacci does not change n!
CORNELL CS4414 - SPRING 2023 16

C++ “CONST” ANNOTATION

Expresses the promise that something will not be changed. (At
least, won’t be changed by this piece of code).

The compiler can then use that knowledge to produce better
code, in situations where an opportunity arises.

Can only be used if you genuinely won’t change the value!

CORNELL CS4414 - SPRING 2023 17

FIBONACCI WITH CONST

Our code doesn’t change n, so we could try:

… but n-1 and n-2 aren’t guaranteed to be in memory, so C++
will complain that it can’t make a reference to them!

CORNELL CS4414 - SPRING 2023 18

int fibonacci(const int& n)
{
 if(n <= 1)
 return n;
 return fibonacci(n-1)+fibonacci(n-2);
}

C++ CONST ANNOTATION

The easiest case:

const int MAXD = 1000; // Length of myvec
char myvec[MAXD]; // digits is an array 8-bit ints

Here, we are declaring a “compile time constant”. C++ knows
that MAXD is constant and can use this in various ways.

CORNELL CS4414 - SPRING 2023 19

WHAT IF I DON’T KNOW AHEAD OF TIME?

Sometimes you can be conservative and declare a constant
length that really is the largest value permitted.

Another option is to pass MAXD in as a compiler argument!
 g++ -std=c++20 –DMAXD=value myprog.cpp –o myprog

Many companies do this for things like photo dimensions where they have
a general purpose program and want to specialize it for common photo
sizes to get a better quality of code from C++

CORNELL CS4414 - SPRING 2023 20

HOW DOES C++ LEVERAGE THIS CONST?

… for example, consider

 myvec[MAXD-k-1] = c;

This sets the item “k” from the end to 8. C++ can compute MAXN-1 as
a constant, and index directly to this item as an offset relative to myvec.

By having c and k in registers, only a single instruction is needed!

CORNELL CS4414 - SPRING 2023 21

movb %rbx,_myvec(999-%rax)

WHY IS THIS SO GREAT?

If C++ had not been able to anticipate that these are constants,
it would have needed to compute the offset into digits.

 That would require more instructions.

Here, we are leveraging knowledge of (1) which items are
constants, and also (2) that C++ puts “frequently accessed”
variables in registers.

CORNELL CS4414 - SPRING 2023 22

MORE EXAMPLES USING “CONST”

We can mark an argument to a method with “const”.

This means “this argument will not be modified”.
 C++ won’t allow that argument to be used in any situation where it
 might be modified.
 C++ will also leverage this knowledge to generate better code.
 But the argument must correspond to a variable in memory

CORNELL CS4414 - SPRING 2023 23

MORE EXAMPLES USING “CONST”

We can mark an argument to a method with “const”.

This means “this argument will not be modified”.
 C++ won’t allow that argument to be used in any situation where it
 might be modified.
 C++ will also leverage this knowledge to generate better code.

CORNELL CS4414 - SPRING 2023 24

// constant_values1.cpp
int main(const int argc, const char** argv) {
 const int i = strlen(argv[0]);
 ….
}

MORE EXAMPLES USING “CONST”

We can mark an argument to a method with “const”.

This means “this argument will not be modified”.
 C++ won’t allow that argument to be used in any situation where it
 might be modified.
 C++ will also leverage this knowledge to generate better code.

CORNELL CS4414 - SPRING 2023 25

// constant_values2.cpp
int main(const int argc, const char**argv) {
 for(const auto n = argc; n < argc; n++)
 printf(“%d’th argument is %s\n”, n, argv[n]);
}

Illegal: For loop
modifies n (C3892)

WORTH KNOWING

const applies to everything on the right of it.

 const int& x: x is an alias for the argument, and it won’t be
 modified. Note that the argument passed in cannot be a
 constant in this case, like 25. An constant value (25) doesn’t live in
 memory so we can’t make a reference to it or take its address.

 const int* x: x is a pointer to an int that won’t be modified

 int* const x: x is a pointer that won’t be modified, but it
 points to an integer that can be modified.

CORNELL CS4414 - SPRING 2023 26

MORE EXAMPLES USING “CONST”

We can mark an argument to a method with “const”.

This means “this argument will not be modified”.
 C++ won’t allow that argument to be used in any situation where it
 might be modified.
 C++ will also leverage this knowledge to generate better code.

CORNELL CS4414 - SPRING 2023 27

// constant_values3.cpp
int main(const int argc, const char**argv)) {
 char *buf0 = (char*)malloc(10);
 char *buf1 = (char*)malloc(20);
 const char* aptr = buf0; // Initializes aptr…
 aptr[0] = 'a'; // OK
 aptr[1] = ‘b'; // OK
 aptr = buf1; // C3892
}

MORE EXAMPLES USING “CONST”

We can mark an argument to a method with “const”.

This means “this argument will not be modified”.
 C++ won’t allow that argument to be used in any situation where it
 might be modified.
 C++ will also leverage this knowledge to generate better code.

CORNELL CS4414 - SPRING 2023 28

// constant_member_function.cpp
class Date
{
private:
 int month, day, year;

public:
 Date(const int&, const int&, const int&);
 Date(const Date&); // A “copy constructor”
 int getMonth() const; // A read-only function
 void setMonth(const int&); // Updates month
};

ASIDE

The “const” suffix for a read-only method like getMonth can only
appear inside a method declared as a member of a class. It
means “read only property” of the object the class defines.

If you used this same notation on a global method, it will be
rejected with an error message.

CORNELL CS4414 - SPRING 2023 29

… BUT CONST CAN ALSO MEAN “I DON’T
CHANGE THIS ARGUMENT”
In this sum function, we are saying “sum will treat a and b as
constants (it won’t change them). It accesses them by reference,
so you cannot pass a constant to it

The const at the end is only permitted if sum is a method in some
class. It says that this method will not change member variables
in the class that defined it.

CORNELL CS4414 - SPRING 2023 30

BY-REFERENCE SOMETIMES MATTERS A LOT!!

Consider this buggy code. litter is a field of type std::list<Kitten>

Where is the mistake?

CORNELL CS4414 - SPRING 2023 31

void addKitten(Cat c, Kitten k) {
 c.litter += k;
}

BY-REFERENCE SOMETIMES MATTERS A LOT!!

… that version was modifying a copy of Cat c! To modify the original:

This version modifies the original Cat c. It also avoids making an extra
copy of kitten k.

CORNELL CS4414 - SPRING 2023 32

void addKitten(Cat& c, Kitten& k) {
 c.litter += k;
}

BY-REFERENCE SOMETIMES MATTERS A LOT!!

… even better is to explicitly say that Kitten k is constant:

But notice that we can’t say that Cat c is a const. We update c.

CORNELL CS4414 - SPRING 2023 33

void addKitten(Cat& c, const Kitten& k) {
 c.litter += k;
}

CONSTEVAL AND CONSTEXPR

The consteval keyword says that “this expression should be
entirely constant”. The expression can even include function calls.

C++ will complain if for some reason it can’t compute the result
at compile time: a constant expression turns into a “result” during
the compilation stage.

If successful, it treats the result as a const.
CORNELL CS4414 - SPRING 2023 34

CONSTEVAL AND CONSTEXPR

In contrast, the constexpr keyword says “try to evaluate this at
compile time, but runtime code is ok if the evaluation fails.”

C++ will not complain if your constexpr is not, in fact, a constant
expression. It just creates some code and evaluates at runtime.

But, if successful, it treats the result as a const.

CORNELL CS4414 - SPRING 2023 35

CONSTEVAL AND CONSTEXPR

The consteval keyword says that “this expression should be
entirely constant”. The expression can even include function calls.

C++ will complain if for some reason it can’t compute the result
at compile time: a constant expression turns into a “result” during
the compilation stage.

If successful, it treats the result as a const.
CORNELL CS4414 - SPRING 2023 36

constexpr float x = 42.0;
constexpr float z = exp(5, 3);
constexpr int i; // Not an error… but not a constant! I isn’t initialized
int j = 0;
constexpr int c = j + 1; //Legal, but will be computed at runtime
consteval int k = j + 1; //Error! j isn’t const, so can’t be fully evaluated

FUNCTIONS USED IN CONSTANT EXPRESSIONS

To use a function in as an initializer for a const, or in a constexpr,
the function itself must be marked as a constexpr.

The compiler will complain if any aspect of the function cannot
be fully computed at compile time.

CORNELL CS4414 - SPRING 2023 37

WE CAN COMBINE THESE ANNOTATIONS

Here we declare that exp is a constant expression using a
recursive method to compute x^n

CORNELL CS4414 - SPRING 2023 38

constexpr float exp(const float x, const int n)
{

if(n == 0)
return 1;

if(n % 2 == 0)
return exp(x * x, n / 2);

return exp(x * x, (n - 1) / 2) * x;
}

HOW DOES THIS IMPACT FIBONACCI(N)?

If n is a constant, fibonacci(n) can actually be computed as a constant
expression too.

The C++ consteval concept focuses on this sort of optimization. If
something is marked as a consteval, C++ computes it at compile time,
and gives an error if this fails!

 Constexpr is very similar but with no error message if it fails. It just
generates normal code if needed.

CORNELL CS4414 - SPRING 2023 39

WE CAN COMBINE THESE ANNOTATIONS

C++ can compute fibonacci(5) as a constexpr entirely at
compile time. It will just turn this into the constant 5. Same with
consteval… but only if you supply a constant argument.

CORNELL CS4414 - SPRING 2023 40

constexpr int fibonacci(const int n)
{

return n <= 1? n: fibonacci(n-1)+fibonacci(n-2);
};

INLINE

Inline tells C++ to “expand” the code of the method. For example:

c = sum(a, b);

would expand into

c = a + b;

CORNELL CS4414 - SPRING 2023 41

inline int sum(const int &a, const int& b)
{

return a+b;
};

INLINING IS AUTOMATIC… YET THE
KEYWORD IS STILL COMMONLY USED
In effect, when we write “inline” we often are giving a hint both
to the compiler (which probably ignores the hint and makes its
own decision!) and also to other readers of the code.

We are saying “I wrote this code as a method, but in fact I am
anticipating that this is really a “code pattern” that will be
expanded for me, then optimized in place”.

CORNELL CS4414 - SPRING 2023 42

CONSTEVAL WILL SAVE 255 INSTRUCTIONS!

A big win for Fibonacci, as long as the compiler can actually
compute the desired value at compile time.

If it can’t, the value isn’t a legitimate consteval. For the constexpr
case, C++ will try inlining your code (and you can “force” it)

CORNELL CS4414 - SPRING 2023 43

A CONCRETE PUZZLE

Consider this
program:

Why doesn’t
inline cause an
infinite recursion
in the compiler?

CORNELL CS4414 - SPRING 2023 44

#include <iostream>
using namespace std;

inline int fibonacci(const int n)
{
 return (n<=1)? n: fibonacci(n-1)+fibonacci(n-2);
};

int main(const int argc, const char** argv)
{
 for(int n = 1; n < 10; n++)
 {
 cout << "fibonacci(" << n << ") is " << fibonacci(n) << endl;
 }
 return 0;
}

INFINITE RECURSION???

In a language like C, which has a #define for inlining, the
preprocessor expands #define before the compiler really runs

But this means the expansion doesn’t have any way to notice that
it is expanding Fibonacci(1) and Fibonacci(0).

… so if this was C #define, it would overflow and give an error

CORNELL CS4414 - SPRING 2023 45

RECURSIVE INLINING?

In principle, if we call this version of fibonacci with a constant, it
“should” expand it fully, then collapse the expression by
realizing that constant arithmetic suffices.

But in fact when the compiler inlines a call to Fibonacci(0) or
Fibonacci(1), it evaluates the if statement and doesn’t do a
recursive expansion!

CORNELL CS4414 - SPRING 2023 46

RECURSIVE INLINING?

Now, suppose we call Fibonacci(10).

In principle, C++ can compute this and substitute the actual
value (55) as a const!

In practice, the compiler limits how much recursion it is willing to
do at compile time. It “gives up” and generates normal code if
the constexpr task is too difficult.

CORNELL CS4414 - SPRING 2023 47

OVERFLOWS?

Consider Fibonacci(100) = 354224848179261915075. This is
too large for a 32-bit int, which is limited to 4294967295!

If C++ sees an integer overflow during consteval expansion, it
gives an error code.

CORNELL CS4414 - SPRING 2023 48

WHAT ABOUT THE FOR LOOP?

In a for loop from n=1 to 10, C++ can “tell” that the for loop
iterates over 10 constant values: 1, 2, … 10

This enables it to “unroll” the loop and substitute a constant for
each instance.

Will it do this? For fancy tasks, C++ can be unpredictable.

CORNELL CS4414 - SPRING 2023 49

HOW DO THESE FEATURES “INTERPLAY”
WITH VECTORIZATION?
To write code that will vectorize nicely, it is very important that
the compiler can determine:

 Sizes of your vectors and matrices
 Loop “stride” values: The increment in a for loop
 Expressions used to access matrix or vector elements
 Values used to “map” from some input x to mapped[x]

For such purposes, constexpr arithmetic can be incredibly useful!
CORNELL CS4414 - SPRING 2023 50

CONCEPT: STATIC ANALYSIS

Modern computing environments often include tools that do some
form of analysis of programs or other objects before the
execution actually occurs.

For the C++ compiler, constexpr and inline illustrate forms of
static analysis that benefit the compilation stage.

CORNELL CS4414 - SPRING 2023 51

HOW STATIC ANALYSIS IS DONE

Focusing on the C++ compiler, it first scans your program and
forms a parsed code representation based on applying the
syntax rules.

Next, it can study this graph structure to learn things.

What sorts of things can static analysis discover?

CORNELL CS4414 - SPRING 2023 52

MORE STATIC ANALYSIS OPPORTUNITIES

We saw constants, arguments by reference and inlining

Static analysis might also discover loop bounds, “dead” code
(an if statement that is never true, or always true), variables that
do or do not need space allocated, etc.

Static analysis is also at the core of type checking.

CORNELL CS4414 - SPRING 2023 53

CONSIDER THE “AUTO” DECLARATION
In C++ we often ask the compiler to figure out types:

Here we created a map from string “names” to Bignum objects, then
iterate through the map (item will be a sequence of std::pair objects)

CORNELL CS4414 - SPRING 2023 54

std::map<std::string, Bignum> the_map;
…
for(auto item: the_map) {
 cout << “The next item is “ << item.to_string() << endl;
 do_something(item);
}

CONSIDER THE “AUTO” DECLARATION
In C++ we often ask the compiler to figure out types:

Here we created a map from string “names” to Bignum objects, then
iterate through the map (item will be a sequence of std::pair objects)

CORNELL CS4414 - SPRING 2023 55

std::map<std::string, Bignum> the_map;
…
for(auto item: the_map) {
 cout << “The next item is “ << item.to_string() << endl;
 do_something(item);
}

auto

auto requires a form of constexpr computation

EXAMPLE OF AN AUTO-DISCOVERED TYPE

When creating my “Bignum” solution, I once ran into this:



CORNELL CS4414 - SPRING 2023 56

std::pair<typename std::_Rb_tree<_Key, std::pair<const _Key, _Tp>, std::_Select1st<std::pair<const _Key, _Tp> >,
_Compare, typename __gnu_cxx::__alloc_traits<_Allocator>::rebind<std::pair<const _Key, _Tp> >::other>::iterator,
bool> std::map<_Key, _Tp, _Compare, _Alloc>::insert(const value_type&) [with _Key =
std::__cxx11::basic_string<char>; _Tp = Bignum; _Compare = std::less<std::__cxx11::basic_string<char> >; _Alloc =
std::allocator<std::pair<const std::__cxx11::basic_string<char>, Bignum> >; typename std::_Rb_tree<_Key,
std::pair<const _Key, _Tp>, std::_Select1st<std::pair<const _Key, _Tp> >, _Compare, typename
__gnu_cxx::__alloc_traits<_Allocator>::rebind<std::pair<const _Key, _Tp> >::other>::iterator =
std::_Rb_tree_iterator<std::pair<const std::__cxx11::basic_string<char>, Bignum> >; std::map<_Key, _Tp, _Compare,
_Alloc>::value_type = std::pair<const std::__cxx11::basic_string<char>, Bignum>]

WHAT IN THE WORLD WAS THAT???

The first thing to know is that C++ often generates its own variables.
To avoid name conflicts, it puts underscore characters (_) at the front.

The second thing to know is that a std::map has a “comparison” function
and an iterator, which (in my case) were defaults.

And so… this was the complete type for std::map<std::string,Bignum>.

CORNELL CS4414 - SPRING 2023 57

IN FACT, C++ WOULDN’T BE USEFUL
WITHOUT TYPE INFERENCE!
Const and constexpr are “natural fits” for C++ because the
compiler is already doing so much automatic inference.

These annotations simply advise the compiler to do what it
wanted to do in any case!

… just a glimpse of the true complexity of modern languages

CORNELL CS4414 - SPRING 2023 58

WE SAW CONSTANT EXPRESSION MATH IN
LECTURE 8, TOO!
C++ depends upon it to recognize parallelizable logic.

In fact, even code rearrangement can be understood as a form
of constant expression evaluation: the code is like an expression,
and all the variant forms of it are “equivalent” representations

This conceptual insight is key to modern compilation…

CORNELL CS4414 - SPRING 2023 59

BUT BEWARE: NOT EVERY STATIC ANALYSIS
PROBLEM CAN BE SOLVED!
We already saw this with constexpr and inlining: recursion can
exceed the limitations of the compiler.

In fact, static analysis can even run into “unsolvable” problems!
 Type inference (auto) is potentially undecidable. Even the decidable
 versions have high complexity. Auto normally is successful.
 But experts can construct cases in which C++ may not be sure
 what the type of a variable is… and will give an error

CORNELL CS4414 - SPRING 2023 60

SUMMARY FROM TODAY

C++ has advanced features that permit compile-time code analysis,
compile-time type inference, and compile-time expression evaluation. This
even includes recursive functions!

When we use const / consteval / constexpr, we “control” the compiler, which
lets us ensure that the optimized code will use specialized instructions or
achieve other kinds of efficiencies.

We code in an elegant, high-level way yet can control the compilation
process down to ensuring that C++ will make the choices we want.

CORNELL CS4414 - SPRING 2023 61

	Constant expressions in C++
	Idea Map For Today
	Connection to conceptual abstraction
	how do programs in C or C++ become executables?
	Consider the humble procedure call…
	… Fibonacci is the most famous example of recursion
	Where is Fibonacci processed?
	Where is Fibonacci processed?
	… does N need a memory location?
	Fibonacci(5)
	Common optimization
	Without memoization, Where is time being spent?
	The cost of the recursive calls?
	… now we can fill in the “?” with 6
	How many instructions to push and pop arguments?
	Some questions we can ask
	C++ “CONST” ANNOTATION
	Fibonacci with const
	C++ const annotation
	What if I don’t know ahead of time?
	How does C++ leverage this const?
	Why is this so great?
	More examples using “const”
	More examples using “const”
	More examples using “const”
	Worth knowing
	More examples using “const”
	More examples using “const”
	aside
	… but const can also mean “I don’t change this argument”
	By-reference sometimes matters a lot!!
	By-reference sometimes matters a lot!!
	By-reference sometimes matters a lot!!
	Consteval and constexpr
	Consteval and constexpr
	Consteval and constexpr
	Functions used in constant expressions
	We can combine these annotations
	How does this impact Fibonacci(n)?
	We can combine these annotations
	Inline
	Inlining is automatic… yet the keyword is still commonly used
	Consteval will save 255 instructions!
	A concrete puzzle
	Infinite recursion???
	Recursive inlining?
	Recursive inlining?
	Overflows?
	What about the for loop?
	How do these features “interplay” with vectorization?
	Concept: Static Analysis
	How static analysis is done
	More Static Analysis opportunities
	Consider the “auto” declaration
	Consider the “auto” declaration
	Example of an auto-discovered type
	What in the world was that???
	In fact, C++ wouldn’t be useful without type inference!
	We saw constant expression math in Lecture 8, too!
	But beware: Not every static analysis problem can be solved!
	Summary from today

