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IDEA MAP FOR TODAY
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Understanding the parallelism inherent in
an application can help us achieve high
performance with less effort.

Ideally, by “aligning” the way we 
express our code or solution with the way 
Linux and the C++ compiler discover 
parallelism, we obtain a great solution

There is a disadvantage to this, too.  If we 
write code knowing how that some version of the C++ 
compiler or the O/S will “discover” some opportunity
for parallelism, that guarantee could erode over time.

This tension between what we explicitly express and
what we “implicitly” require is universal in computing,
although people are not always aware of it



MODERN SYSTEMS ARE FULL OF 
OPPORTUNITIES FOR PARALLISM
Hardware or software prefetching into a cache
File I/O overlapped with computing in the application
Threads (for example, in word count, 1 to open files and many to 
process those files).
Linux processes in a pipeline
Daemon processes on a computer
VMs sharing some host machine
Parallel instructions in the Intel instruction set (and many others) 
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A FEW WAYS TO OBTAIN PARALLELISM

Some of these are automatic.  E.g.: if Linux notices that the file is 
being scanned sequentially, it will prefetch blocks.  

Some require special logic: To process many blocks in parallel, you 
launch many threads, one per block.  As long as these threads don’t 
interfere with one-another, we get an n-fold speedup.

Some depend on the compiler mapping your code to “parallel 
instructions” supported by the CPU.
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EMBARASSING PARALLELISM 

There are entire textbooks and courses on parallel algorithms

But most parallel computing opportunities are totally obvious – 
things that can easily be done simultaneously if we understand 
how to “launch” and “control” that pattern of execution.

We call this “embarrassing parallelism” when the opportunity is 
just sitting there but we neglected to leverage it.
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OPPORTUNITIES FOR PARALLELISM

Consider this photo rotation:

Does it have embarrassing parallism in the task?
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Rotate 3-D



OPPORTUNITIES FOR PARALLELISM
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On disk, photo spans many blocks

File system could be doing prefetching

The application has multiple threads and
they are processing different blocks.  

The blocks themselves are arrays of pixels.  
We need to multiply each pixel against a 
small 4x4 tensor describing the rotation

O/S kernel

Storage 
device

Application



BUT THE EXAMPLE AS SHOWN HAS A “GOTCHA”!

Are these submatrices actually adjacent 
data, in the image as held in memory?

In C++ (like most languages), a matrix is 
represented in “row major” layout: first 
all the data in row 0, sequentially, then 
row 1, etc.
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HOW IS AN IN-MEMORY ARRAY REPRESENTED?

float myArray[4][3]
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1.111 2.222 3.333

4.444 5.555 ….

1.111

2.222

3.333

4.444

5.555

…

Smallest 
address 32-bit float:  4 bytes each

Larger 
addresses

Sixteen floats per cache
line (64 / 4)



BUT THE EXAMPLE AS SHOWN HAS A “GOTCHA”!

… so, data in a single row is contiguous.  A 
raster of the image is a row in a matrix!

… and a slice holding several complete 
rows would also be contiguous

But these submatrices are “scattered” in the 
larger matrix.  They only look contiguous 
when we visualize the image!

CORNELL CS4414 - SPRING 2023 10



HOW BAD COULD IT BE?  … PRETTY BAD!

Potentially, each raster for one of those sub-boxes is in a 
different disk block.  (Why is this the case?)

So one thread might need to read hundreds of blocks just to 
process a single chunk of the rotate task

This will be incredibly slow!
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OPPORTUNITIES FOR PARALLELISM

Smarter photo rotation:
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Now each 
slice we are 
rotating is a 
contiguous 
submatrix of 
the image!



DISK READS?

Scanned from 0 to N, each raster is in one (or more) disk blocks

So each of our rotational tasks do a minimal number of disk 
reads, and issues them in sequential order
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WHAT DOES THIS SAY ABOUT “REQUIREMENTS” 
FOR THE MAXIMUM DEGREE OF PARALLELISM?

A task must be able to run independently from any other tasks on 
data that is independently accessible, and ideally, contiguous and in 
distinct pages (normally 4K) 

There should be an opportunity to have many of these running

Individual tasks shouldn’t “stall” (by waiting for I/O, or paging, or a 
lock).  Our original partitioning of the photo might stall.
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ISSUES RAISED BY LAUNCHING THREADS: 
“UNNOTICED” SHARING
Recall that we want Linux to prefetch each block.

With n threads, we have n separate tasks requesting blocks.

It will be important that Linux still sees these requests in order, as 
sequential reads.  If reads “jump around” in the file, as with our 
original blocking, Linux won’t notice the sequence and won’t prefetch.  
The reads “surprise” the OS and your reading threads stall…
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ISSUES RAISED BY LAUNCHING THREADS: 
“UNNOTICED” SHARING
Suppose that your application uses a standard C++ library

If that library has any form of internal data sharing or 
dependencies, your threads might happen to call those methods 
simultaneously, causing interference effects.

This can lead to concurrency bugs, which will be a big topic for us 
soon (but not in today’s lecture).  Preventing bugs requires locks
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… LOCKING CAN INVOLVE WAITING (STALLS).  

We will need to learn to use locking or other forms of concurrency 
control (mutual exclusion). For example, in C++:

         std::mutex my_mutex;                                 // Defines a form of lock

          …

  {
        std::lock_guard my_lock(my_mutex);    // Obtains the lock, may wait here
                … this code will be safe …
 }
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… LOCKING CAN INVOLVE WAITING.  THIS 
IS ONE EXAMPLE OF A THREAD “STALLING”
We will need to learn to use locking or other forms of concurrency 
control (mutual exclusion). For example, in C++:

         std::mutex my_mutex;                                 // Defines a form of lock

          …

  {
        std::lock_guard my_lock(my_mutex);    // Obtains the lock, may wait here
                … this code will be safe …
 }
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std::lock_guard works, but modern C++ has 
other options too.

In an upcoming lecture we will see the “best 
standard practice”, but it involves a C++ 

language feature we haven’t talked about yet



ANY FORM OF STALLING REDUCES PARALLELISM

Now thread A would wait for B, or vice versa, and the protected 
object, such as a counter, is incremented in two separate actions

But if A or B paused, we saw some delay

This is like with Amdahl’s law: the lock has become a bottleneck!
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PARALLEL SOLUTIONS MAY ALSO BE HARDER 
TO CREATE DUE TO EXTRA STEPS REQUIRED
Think back to our word counting programs. It avoided locks!

We used 24 threads, but ended up with 24 separate sub-counts
  The issue was that we wanted the heap for each thread to be a 
    RAM memory unit close to that thread
  So, we end up wanting each to have its own std::map to count words
  But rather than 24 one-by-one map-merge steps, we ended up going
    for a parallel merge approach
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MORE COSTS OF PARALLELISM

These std::map merge operations are only needed because our 
decision to use parallel threads resulted in us having many maps.

… code complexity increased
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IMAGE AND TENSOR PROCESSING

Images and the data objects that arise in ML are tensors: 
matrices with 1, 2 or perhaps many dimensions.

Operations like adjusting the colors on an image, adding or 
transposing a matrix, are embarrassingly parallel. Even matrix 
multiply has a mix of parallel and sequential steps.

This is why hardware vendors created GPUs.
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CONCEPT:  SISD VERSUS SIMD

A normal CPU is single instruction, single data

  An instruction like movq moves a single quad-sized integer
 to a register, or from a register to memory.

 An instruction like addq does an add operation on a single register

So: one instruction, one data item
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X = Y*3;



CONCEPT SISD VERSUS SIMD

A SIMD instruction is a single instruction, but it operates on a 
vector or matrix all as a single operation.  For example: apply a 
3-D rotation to my entire photo in “one operation”

In effect, Intel used some space on the NUMA chip to create a 
kind of processor that can operate on multiple data items in a 
single clock step.  One instruction, multiple data objects: SIMD
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Rotate 3-D



SIDE REMARK

In fact, rotating a photo takes more than one machine instruction.

It actually involves a matrix multiplication: the photo is a kind of 
matrix (of pixels), and there is a matrix-multiplication we can 
perform that will do the entire rotation.

So… a single matrix multiplication, but it takes a few instructions in 
machine code, per pixel.  SIMD could do each instruction on many 
pixels at the same time.
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Rotate 3-D



SIMD LIMITATIONS

A SIMD system always has some limited number of CPUs for 
these parallel operations.

Moreover, the computer memory has a limited number of 
parallel data paths for these CPUs to load and store data

As a result, there will be some limit to how many data items the 
operation can act on in that single step!
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INTEL VECTORIZATION
COMPARED WITH GPU
A vectorized computation on an Intel machine is limited to a 
total object size of 64 bytes.
  Intel allows you some flexibility about the data in this vector.
  It could be 8 longs, 16 int-32’s, 64 bytes, etc.

In contrast, the NVIDIA Tesla T4 GPU we talked about in lecture 4 has 
thousands of CPUs that can talk, simultaneously, to the special built-in 
GPU memory.  A Tesla SIMD can access a far larger vector or matrix in a 
single machine operation.
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EXAMPLE: PHOTO ROTATION

With a SIMD approach, we can rotate “one raster at a time”

We would want each raster to be a fixed number of cache lines 
in length, holding a fixed set of pixels per raster.  We also need 
the entire image object to start on a cache-line boundary, and 
we need C++ to realize this.

Then we would get a 16x or 32x speedup!
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IRREGULAR SIZES?

They will be slower because C++ will generate a mix of pixel 
by pixel operations and cache-line parallel SIMD ones.

It does this transparently… yet your code will run more slowly!

So… as the developer… you will be rewarded (by a speedup) 
for designing code to have the ideal properties!
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… CS4414 IS ABOUT PROGRAMMING A 
NUMA MACHINE, NOT A GPU
So, we won’t discuss the GPU programming case.

But it is interesting to realize that normal C++ can benefit from 
Intel’s vectorized instructions, if your machine has that capability!

To do this we need a C++ compiler with vectorization support 
and must write our code in a careful way, to “expose” parallelism
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… AND ABOUT ABSTRACTIONS

Unfortunately, we need new programming language ideas to do 
a better job of abstracting parallelism opportunities

  Threads work well, and we’ll learn about them.  Abstracted
    concurrency.

  But the kind of parallelism where one instruction triggers a
    “row” of micro-CPUs to transform a whole vector of data
    in one shot is simply not easy to “abstract”.  Leveraging it
    feels very manuel (hands-on).
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THE INTEL VECTORIZATION INSTRUCTIONS

When the MMX extensions to the Intel x86 instructions were 
released in 1996, Intel also released compiler optimization 
software to discover vectorizable code patterns and leverage 
these SIMD instructions where feasible.

The optimizations are only available if the target computer is an 
Intel chip that supports these SIMD instructions.  
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INITIALLY, C++ DID NOT SUPPORT MMX

It took several years before other C++ compilers adopted the MMX 
extensions and incorporated the associated logic.

Today, C++ will search for vectorization opportunities if you ask for 
it, via -ftree-vectorize or –O3 flags to the C++ command line.

… so, many programs have vectorizable code that doesn’t exploit 
vector-parallel opportunities even on a computer than has MMX
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INTEL IS NOT THE ONLY CPU DESIGNER.  GCC 
IS NOT THE ONLY C++ COMPILER… 
AMD and ARM are other major players in the CPU design 
space.  They have their own vector-parallel design, and the 
instructions are different (but similar in overall approach).

Clang is another major C++ compiler.  It aligns with GCC on 
most things, but has slightly different rules for how it detects 
opportunities to generate parallel code
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MODERN C++ SUPPORT FOR SIMD

Requires –O3 option to gcc (older option name: -ftree-vectorize)

You must write your code in a vectorizable manner: simple for 
loops that access the whole vector (the loop condition can only 
have a simple condition based on vector length), body of the 
loop must map to the SIMD instructions.
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EXAMPLE OF A REQUIREMENT

A matrix should be “densely” layed out, in memory, and start on 
a cache-line boundary (an address that is a multiple of 64)

We mentioned this earlier.  Now we will see how it can be 
harder than it sounds!
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EXAMPLE OF A REQUIREMENT

… Thought questions:

  Is a C++ std::vector<float> densely represented in memory?

  What about std::vector<std::vector<float>>?

  Do they start on cache-line boundaries?  Even if so, will C++ 
    know this at compile time?
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WHY WOULD WE ASK THIS QUESTION?

When reading a table of 
data (“a structured file”) 
each line generally is 
read into a 
  std::vector<std::string>, 
but this is easily converted 
to a std::vector<float>
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std::vector<std::string> stringVector = {"3.14", "2.718", "42.0"};

    // Convert strings to floats
    std::vector<float> floatVector;
    for (const auto& str : stringVector) {
        try {
            float value = std::stof(str);
            floatVector.push_back(value);
        } catch (const std::invalid_argument& e) {
            // Handle invalid strings (e.g., non-numeric)
            std::cerr << "Error parsing string: " << str << std::endl;
        }
    }



… SO EACH ROW IS A STD::VECTOR<FLOAT>

A table with R rows becomes a vector of vectors!  Suppose each 
row has F floats in it.

std::vector<std::vector<float>>, with R*F entries in total

But to leverage parallel instructions, we need this to be 
physically contigurous in memory
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HOW IS STD::VECTOR<FLOAT> “REPRESENTED”?

Internally, C++ has a small object holding the length, type and 
a pointer to the actual data, which is allocated using malloc
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Length, “float”, *

17.8761 3.14152 1.416791 9.097199 4.82604



HOW IS STD::VECTOR<STD::VECTOR<FLOAT>> “REPRESENTED”?

Internally, C++ has a small object holding the length, type and a 
pointer to the actual data, which is allocated using malloc

These four vectors might not be contiguous in memory!  And unless 
you use aligned_malloc, they might not be cache-line aligned!
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Length, “std::vector< float>”, *



REMINDER: DENSE IN-MEMORY ARRAY IS REPRESENTED 
SEQUENTIALLY IN MEMORY

float myArray[4][3]
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1.111 2.222 3.333

4.444 5.555 ….

1.111

2.222

3.333

4.444

5.555

…

Smallest 
address 32-bit float:  4 bytes each

Larger 
addresses



…. AND THE MMX INSTRUCTIONS WANT A DENSE SEQUENCE!

float myArray[4][3]
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1.111 2.222 3.333

4.444 5.555 ….

1.111

2.222

3.333

4.444

5.555

…

Smallest 
address 32-bit float:  4 bytes each

Larger 
addresses

Eight floats per cache
line (64 / 4)



…. AND THE MMX INSTRUCTIONS WANT A DENSE SEQUENCE!

float myArray[4][3]
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1.111 2.222 3.333

4.444 5.555 ….

1.111

2.222

3.333

4.444

5.555

…

Smallest address
must be a multiple 
of 64: “cache-line 

aligned” data

32-bit float:  4 bytes each

Sixteen floats per cache
line (64 / 4)

Entire data object
should be an exact

multiple of 64



PARALLEL INSTRUCTIONS

They operate on an entire cache line in one shot, or two cache lines for 
vector-vector operations
  Example: Multiply every float-32 by 2.5
  Example: Y = A + B
  Y = A + B*2.5 requires two instructions
  Can also perform row * column in one instruction

A cache-line is 64 bytes long, and a float-32 is a 4 byte object, so a single 
instruction performs 16 operations
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HOW DOES IT HANDLE THE COLUMNS?

They aren’t “sequential in memory”, yet MMX also can handle 
columns because rows have fixed length.

The distance from element k of column k to element k+1 will be 
exactly the row length plus 1.  

The feature is much faster if row length is power of 2, because it 
allows MMX to “multiply” using shift-left, which is faster
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WHAT ABOUT NON-CACHE-LINE MULTIPLES

Cache-line boundary: A memory address that is a multiple of 64

C++ compiler will use one-by-one logic until it reaches a cache-
line boundary, then cache-line-at-a-time logic until there is less 
than one cache-line of data still to do, then one-by-one again.

This is quite slow, and you’ll notice the slowdown if you measure
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AND NOW… A GLIMPSE OF 
THIS WEEK’S RECITATION!

Material Alicia will 
actually cover!
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THE COMPILER NEEDS YOUR HELP!

Random C++ code won’t be very vectorizable

But if you code in a careful way, you can arrange for your logic 
to vectorize nicely.  You need to give “hints” to help the compiler

C++ needs to be able to see that the data is properly cache 
aligned, and dense in memory, and of fixed chunk-sizes that are 
multiples of the cache-line length
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A HELPFUL DATATYPE DECLARATION:

For a vector or matrix declared inline, C++ will automatically 
memory align it, and track that it did so.

For complex structures, declared inline, C++ might need help.  
This example is GCC-specific but would work:
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__declspec(align(64)) struct Str1{
         int a, b, c, d, e;
};



WHAT ABOUT POINTERS?

For a pointer, use a declaration like this (GCC-specific):
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typedef double aligned_double __attribute__((aligned (16)));
// Note: sizeof(aligned_double) is 8, not 16
void some_function(aligned_double *x, aligned_double *y, int n)
{
        for (int i = 0; i < n; ++i) {
                // math!
        }
}



… BUT A WARNING

You could “lie” and it would result in strange program crashes

Once you promise to put an aligned pointer into your pointer 
variable, C++ will trust that you did so, and will generate MMX 
code that only works with an aligned pointer!

Type checking helps… but would be relatively easy to fool
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GNU C++ EXAMPLES THAT WOULD 
PARALLELIZE AUTOMATICALLY
This simple addition
can be done in parallel.

The compiler will eliminate the
loop if a single operation suffices.
Otherwise it will generate one
instruction per “chunk”
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Example 1:
int a[256], b[256], c[256];
foo () {
int i;

for (i=0; i<256; i++){
a[i] = b[i] + c[i];

}
}

https://gcc.gnu.org/projects/tree-ssa/vectorization.html

https://gcc.gnu.org/projects/tree-ssa/vectorization.html


GNU C++ EXAMPLES THAT WOULD 
PARALLELIZE AUTOMATICALLY
Here we see more difficult
cases

The compiler can’t predict
the possible values n could
have, making this code hard
to “chunk”
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Example 2:
int a[256], b[256], c[256];
foo (int n, int x) {
   int i;
   /* feature: support for unknown loop bound  */
   /* feature: support for loop invariants  */
   for (i=0; i<n; i++)
      b[i] = x;
   }
   /* feature: general loop exit condition  */
   /* feature: support for bitwise operations  */
   while (n- -){
      a[i] = b[i]&c[i]; i++;
   }
}

https://gcc.gnu.org/projects/tree-ssa/vectorization.html


GNU C++ EXAMPLES THAT WOULD 
PARALLELIZE AUTOMATICALLY
Parallelizing a 2-d matrix
seems “easy” but in fact
data layout matters.

To successfully handle such
cases, the dimensions must
be constants known at 
compile time!
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Example 8:
int a[M][N];
foo (int x) {
   int i,j;

   /* feature: support for multidimensional arrays  */
   for (i=0; i<M; i++) {
     for (j=0; j<N; j++) {
       a[i][j] = x;
     }
   }
}

https://gcc.gnu.org/projects/tree-ssa/vectorization.html


GNU C++ EXAMPLES THAT WOULD 
PARALLELIZE AUTOMATICALLY
This sum over differences
is quite a tricky operation
to parallelize!

C++ uses a temporary
object, generates the diff,
then sums over the temporary
array
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Example 9:
unsigned int ub[N], uc[N];
foo () {
  int i;

  /* feature: support summation reduction.
     note: in case of floats use -funsafe-math-optimizations  
*/
  unsigned int diff = 0;
  for (i = 0; i < N; i++) {
    udiff += (ub[i] - uc[i]);
  }

https://gcc.gnu.org/projects/tree-ssa/vectorization.html


SUMMARY: THINGS YOU CAN DO

Apply a basic mathematical operation to each element of a 
vector.

Perform element-by-element operations on two vectors of the 
same size and layout

Apply a very limited set of conditional operations on an item by 
item basis
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ADVICE FROM INTEL

Think hard about the layout of data in memory
  Vector hardware only reaches its peak performance for carefully
   “aligned” data (for example, on 16-byte boundaries).
  Data must also be densely packed: instead of an array of structures
   or objects, they suggest that you build objects that contain arrays of
   data, even if this forces changes to your software design.
  Write vectorization code in simple “basic blocks” that the compiler
    can easily identify.  Straight-line code is best.
  “inline” any functions called on the right-hand of an = sign
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WITHIN THAT CODE…

On the right hand slide of expressions, limit yourself to accessing 
arrays and simple “invariant” expressions that can be computed 
once, at the top of the code block, then reused.

Avoid global variables: the compiler may be unable to prove to 
itself that the values don’t change, and this can prevent it from 
exploring many kinds of vectorization opportunities.
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LEFT HAND SIDE… 

When doing indexed data access, try to have the left hand side 
and right hand side “match up”: vectors of equal size, etc.

Build for loops with a single index variable, and use that 
variable as the array index – don’t have other counters that are 
also used.   
  SIMD code can access a register holding the for-loop index, but
    might not be able to load other kinds of variables like counters
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THINGS TO AVOID

No non-inlined function calls in these vectorizable loops, other 
than to basic mathematical functions provided in the Intel library 

No non-vectorizable inner code blocks (these disable vectorizing 
the outer code block)

No “data dependent” end-of-loop conditions: These often make 
the whole loop non-vectorizable
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POTENTIAL SPEEDUP?

With Intel MMX SIMD instructions, you get a maximum speedup 
of about 128x for operations on bit vectors.  

More typical are speedups of 16x to 64x for small integers.

Future processors are likely to double this every few years
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FLOATING POINT

Given this form of vectorized integer support, there has been a 
lot of attention to whether floating point can somehow be 
mapped to integer vectors.

In certain situations this is possible: it works best if the entire 
vector can be represented using a single exponent, so that we 
can have a vector of values that share this same exponent, and 
then can interpret the vector as limited-precision floating point.

CORNELL CS4414 - SPRING 2023 63



C++ VECTORIZATION FOR FLOATS

There is a whole ten-page discussion of this in the compiler 
reference materials!

With care, you can obtain automatically vectorizable code for 
floats, but the rules are quite complicated.

… However, GPU programming would be even harder!
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COULD THIS SOLVE OUR PHOTO ROTATION?

We can think of a photo as a flat 3-D object.  Each pixel is a 
square.  A 3-D rotation is a form of matrix multiplication.
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TWO FLOATING POINT OPTIONS

We could “construe” our pixels as floating point numbers.

But we could also replace a floating point number by a rational 
number.

For example: π ≅ 22/7.   So, x*π ≅ (x*22)/7.  We could relace 
all operations involving π with 22/7: integer arithmetic!

CORNELL CS4414 - SPRING 2023 66



RATIONAL ARITHMETIC LETS US LEVERAGE 
THE INTEL VECTOR HARDWARE
The Intel vector instructions only work for integers.

But they are fast, and parallel, and by converting rational 
numbers to integers, we can get fairly good results.

Often this is adequate!
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THIS IS WIDELY USED IN MACHINE LEARNING!

We noted that many ML algorithms are very power-hungry

Researchers have shown that often they are computing with far more 
precision than required and that reduced-precision versions work just 
as well, yet can leverage these vector-parallel SIMD instructions.

These are available in reduced-precision ML libraries and graphics 
libraries today.
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GPU VERSUS SIMD

Why not just ship the parallel job to the GPU?
  GPUs are costly, and consume a lot of power.  A standard processor
    with SIMD support that can do an adequate job on the same task
    will be cheaper and less power-hungry.
  Even if you do have a GPU, using it has overheads:
 The system must move the data into the GPU.  Like a calculator
  where you type in the data.

 Then it asks the GPU to perform some operation.  “Press the button”
 Then must read the results out.
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NEW-AGE OPTIONS

These include TPU accelerators: “tensor processing units”

FPGA:   A programmable circuit, which can be connected to other 
circuits to build huge ultra-fast vision and speech interpreting 
hardware, or blazingly fast logic for ML.

RDMA: Turns a rack of computers or a data center into a big NUMA 
machine.  Every machine can see the memory of every other machine
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STEPPING BACK WE FIND… CONCEPTUAL 
ABSTRACTION PATTERNS.
When you look at a computer, like a desktop or a laptop, what 
do you see?

Some people just see a box with a display that has the usual 
applications: Word, Zoom, PowerPoint…

Advanced systems programmers see a complex machine, but 
they think of it in terms of conceptual building blocks.
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SPEED VERSUS PORTABILITY

One risk with this form of abstract reasoning is that code might 
not easily be portable.

We are learning about SIMD opportunities because most 
modern computers have SIMD instruction sets (Intel, AMD, etc).

A feature available on just one type of computer can result in a 
style of code that has poor performance on other machines.
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APPLICATIONS CAN HAVE BUILT-IN CHECKS

If you do create an application that deliberately leverages 
hardware such as a particular kind of vectorization, it makes 
sense to have unit tests that benchmark the program on each 
distinct computer.

The program can then warn if used on an incompatible platform: 
“This program has not been optimized for your device, and may 
perform poorly”.
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SUMMARY

Understanding the computer architecture, behavior of the 
operating system, data object formats and C++ compiler 
enables us to squeeze surprising speedups from our system!

Because SIMD instructions have become common, it is worth 
knowing about them.  When you are able to leverage them, you 
gain speed and reduce power consumption.

CORNELL CS4414 - SPRING 2023 74


	In search of an abstract way to think about Parallelism
	Idea Map For Today
	Modern systems are full of opportunities for parallism
	A few Ways to obtain parallelism
	Embarassing parallelism 
	Opportunities for parallelism
	Opportunities for Parallelism
	But the example as shown has a “gotcha”!
	How is an in-memory array represented?
	But the example as shown has a “gotcha”!
	How bad could it be?  … pretty bad!
	Opportunities for parallelism
	Disk reads?
	What Does this say about “requirements” for the maximum degree of parallelism?
	Issues raised by launching Threads: “unnoticed” sharing
	Issues raised by launching Threads: “unnoticed” sharing
	… locking can involve waiting (STALLS).  
	… locking can involve waiting.  This is one example of a thread “stalling”
	Any form of stalling reduces parallelism
	Parallel solutions may also be harder to create due to extra steps required
	More costs of parallelism
	Image and tensor processing
	Concept:  SISD versus SIMD
	Concept SISD versus SIMD
	Side remark
	SIMD limitations
	Intel vectorization�compared with GPU
	Example: Photo rotation
	Irregular sizes?
	… CS4414 is about programming a NUMA machine, not a GPU
	… and about abstractions
	The Intel Vectorization Instructions
	Initially, C++ did not support MMX
	Intel is not the only CPU designer.  GCC is not the only C++ compiler… 
	Modern C++ support for SIMD
	Example of a requirement
	Example of a requirement
	Why would we ask this question?
	… so each row is a std::vector<float>
	How is std::vector<float> “represented”?
	How is std::vector<std::vector<float>> “represented”?
	Reminder: Dense in-memory array is represented sequentially in memory
	…. And the MMX instructions want a dense sequence!
	…. And the MMX instructions want a dense sequence!
	Parallel instructions
	How does it handle the columns?
	What about non-cache-line multiples
	And now… a glimpse of this week’s recitation!
	The compiler needs your help!
	A helpful datatype declaration:
	What about pointers?
	… but a warning
	GNU C++ examples that would parallelize automatically
	GNU C++ examples that would parallelize automatically
	GNU C++ examples that would parallelize automatically
	GNU C++ examples that would parallelize automatically
	Summary: Things you can do
	Advice from Intel
	Within that code…
	Left hand side… 
	Things to avoid
	Potential speedup?
	Floating Point
	C++ vectorization for floats
	Could this solve our photo rotation?
	Two floating point options
	Rational arithmetic lets us leverage the Intel vector hardware
	This is widely used in machine learning!
	GPU versus SIMD
	New-age options
	Stepping back we find… conceptual abstraction patterns.
	Speed versus portability
	Applications can have built-in Checks
	Summary

