
IN SEARCH OF AN ABSTRACT WAY TO
THINK ABOUT PARALLELISM

Professor Ken Birman
CS4414 Lecture 8

CORNELL CS4414 - SPRING 2023 1

IDEA MAP FOR TODAY

CORNELL CS4414 - SPRING 2023 2

Understanding the parallelism inherent in
an application can help us achieve high
performance with less effort.

Ideally, by “aligning” the way we
express our code or solution with the way
Linux and the C++ compiler discover
parallelism, we obtain a great solution

There is a disadvantage to this, too. If we
write code knowing how that some version of the C++
compiler or the O/S will “discover” some opportunity
for parallelism, that guarantee could erode over time.

This tension between what we explicitly express and
what we “implicitly” require is universal in computing,
although people are not always aware of it

MODERN SYSTEMS ARE FULL OF
OPPORTUNITIES FOR PARALLISM
Hardware or software prefetching into a cache
File I/O overlapped with computing in the application
Threads (for example, in word count, 1 to open files and many to
process those files).
Linux processes in a pipeline
Daemon processes on a computer
VMs sharing some host machine
Parallel instructions in the Intel instruction set (and many others)

CORNELL CS4414 - SPRING 2023 3

A FEW WAYS TO OBTAIN PARALLELISM

Some of these are automatic. E.g.: if Linux notices that the file is
being scanned sequentially, it will prefetch blocks.

Some require special logic: To process many blocks in parallel, you
launch many threads, one per block. As long as these threads don’t
interfere with one-another, we get an n-fold speedup.

Some depend on the compiler mapping your code to “parallel
instructions” supported by the CPU.

CORNELL CS4414 - SPRING 2023 4

EMBARASSING PARALLELISM

There are entire textbooks and courses on parallel algorithms

But most parallel computing opportunities are totally obvious –
things that can easily be done simultaneously if we understand
how to “launch” and “control” that pattern of execution.

We call this “embarrassing parallelism” when the opportunity is
just sitting there but we neglected to leverage it.

CORNELL CS4414 - SPRING 2023 5

OPPORTUNITIES FOR PARALLELISM

Consider this photo rotation:

Does it have embarrassing parallism in the task?

CORNELL CS4414 - SPRING 2023 6

Rotate 3-D

OPPORTUNITIES FOR PARALLELISM

CORNELL CS4414 - SPRING 2023 7

On disk, photo spans many blocks

File system could be doing prefetching

The application has multiple threads and
they are processing different blocks.

The blocks themselves are arrays of pixels.
We need to multiply each pixel against a
small 4x4 tensor describing the rotation

O/S kernel

Storage
device

Application

BUT THE EXAMPLE AS SHOWN HAS A “GOTCHA”!

Are these submatrices actually adjacent
data, in the image as held in memory?

In C++ (like most languages), a matrix is
represented in “row major” layout: first
all the data in row 0, sequentially, then
row 1, etc.

CORNELL CS4414 - SPRING 2023 8

HOW IS AN IN-MEMORY ARRAY REPRESENTED?

float myArray[4][3]

CORNELL CS4414 - SPRING 2023 9

1.111 2.222 3.333

4.444 5.555 ….

1.111

2.222

3.333

4.444

5.555

…

Smallest
address 32-bit float: 4 bytes each

Larger
addresses

Sixteen floats per cache
line (64 / 4)

BUT THE EXAMPLE AS SHOWN HAS A “GOTCHA”!

… so, data in a single row is contiguous. A
raster of the image is a row in a matrix!

… and a slice holding several complete
rows would also be contiguous

But these submatrices are “scattered” in the
larger matrix. They only look contiguous
when we visualize the image!

CORNELL CS4414 - SPRING 2023 10

HOW BAD COULD IT BE? … PRETTY BAD!

Potentially, each raster for one of those sub-boxes is in a
different disk block. (Why is this the case?)

So one thread might need to read hundreds of blocks just to
process a single chunk of the rotate task

This will be incredibly slow!

CORNELL CS4414 - SPRING 2023 11

OPPORTUNITIES FOR PARALLELISM

Smarter photo rotation:

CORNELL CS4414 - SPRING 2023 12

Now each
slice we are
rotating is a
contiguous
submatrix of
the image!

DISK READS?

Scanned from 0 to N, each raster is in one (or more) disk blocks

So each of our rotational tasks do a minimal number of disk
reads, and issues them in sequential order

CORNELL CS4414 - SPRING 2023 13

WHAT DOES THIS SAY ABOUT “REQUIREMENTS”
FOR THE MAXIMUM DEGREE OF PARALLELISM?

A task must be able to run independently from any other tasks on
data that is independently accessible, and ideally, contiguous and in
distinct pages (normally 4K)

There should be an opportunity to have many of these running

Individual tasks shouldn’t “stall” (by waiting for I/O, or paging, or a
lock). Our original partitioning of the photo might stall.

CORNELL CS4414 - SPRING 2023 14

ISSUES RAISED BY LAUNCHING THREADS:
“UNNOTICED” SHARING
Recall that we want Linux to prefetch each block.

With n threads, we have n separate tasks requesting blocks.

It will be important that Linux still sees these requests in order, as
sequential reads. If reads “jump around” in the file, as with our
original blocking, Linux won’t notice the sequence and won’t prefetch.
The reads “surprise” the OS and your reading threads stall…

CORNELL CS4414 - SPRING 2023 15

ISSUES RAISED BY LAUNCHING THREADS:
“UNNOTICED” SHARING
Suppose that your application uses a standard C++ library

If that library has any form of internal data sharing or
dependencies, your threads might happen to call those methods
simultaneously, causing interference effects.

This can lead to concurrency bugs, which will be a big topic for us
soon (but not in today’s lecture). Preventing bugs requires locks

CORNELL CS4414 - SPRING 2023 16

… LOCKING CAN INVOLVE WAITING (STALLS).

We will need to learn to use locking or other forms of concurrency
control (mutual exclusion). For example, in C++:

 std::mutex my_mutex; // Defines a form of lock

 …

 {
 std::lock_guard my_lock(my_mutex); // Obtains the lock, may wait here
 … this code will be safe …
 }

CORNELL CS4414 - SPRING 2023 17

… LOCKING CAN INVOLVE WAITING. THIS
IS ONE EXAMPLE OF A THREAD “STALLING”
We will need to learn to use locking or other forms of concurrency
control (mutual exclusion). For example, in C++:

 std::mutex my_mutex; // Defines a form of lock

 …

 {
 std::lock_guard my_lock(my_mutex); // Obtains the lock, may wait here
 … this code will be safe …
 }

CORNELL CS4414 - SPRING 2023 18

std::lock_guard works, but modern C++ has
other options too.

In an upcoming lecture we will see the “best
standard practice”, but it involves a C++

language feature we haven’t talked about yet

ANY FORM OF STALLING REDUCES PARALLELISM

Now thread A would wait for B, or vice versa, and the protected
object, such as a counter, is incremented in two separate actions

But if A or B paused, we saw some delay

This is like with Amdahl’s law: the lock has become a bottleneck!

CORNELL CS4414 - SPRING 2023 19

PARALLEL SOLUTIONS MAY ALSO BE HARDER
TO CREATE DUE TO EXTRA STEPS REQUIRED
Think back to our word counting programs. It avoided locks!

We used 24 threads, but ended up with 24 separate sub-counts
 The issue was that we wanted the heap for each thread to be a
 RAM memory unit close to that thread
 So, we end up wanting each to have its own std::map to count words
 But rather than 24 one-by-one map-merge steps, we ended up going
 for a parallel merge approach

CORNELL CS4414 - SPRING 2023 20

MORE COSTS OF PARALLELISM

These std::map merge operations are only needed because our
decision to use parallel threads resulted in us having many maps.

… code complexity increased

CORNELL CS4414 - SPRING 2023 21

IMAGE AND TENSOR PROCESSING

Images and the data objects that arise in ML are tensors:
matrices with 1, 2 or perhaps many dimensions.

Operations like adjusting the colors on an image, adding or
transposing a matrix, are embarrassingly parallel. Even matrix
multiply has a mix of parallel and sequential steps.

This is why hardware vendors created GPUs.
CORNELL CS4414 - SPRING 2023 22

CONCEPT: SISD VERSUS SIMD

A normal CPU is single instruction, single data

 An instruction like movq moves a single quad-sized integer
 to a register, or from a register to memory.

 An instruction like addq does an add operation on a single register

So: one instruction, one data item

CORNELL CS4414 - SPRING 2023 23

X = Y*3;

CONCEPT SISD VERSUS SIMD

A SIMD instruction is a single instruction, but it operates on a
vector or matrix all as a single operation. For example: apply a
3-D rotation to my entire photo in “one operation”

In effect, Intel used some space on the NUMA chip to create a
kind of processor that can operate on multiple data items in a
single clock step. One instruction, multiple data objects: SIMD

CORNELL CS4414 - SPRING 2023 24

Rotate 3-D

SIDE REMARK

In fact, rotating a photo takes more than one machine instruction.

It actually involves a matrix multiplication: the photo is a kind of
matrix (of pixels), and there is a matrix-multiplication we can
perform that will do the entire rotation.

So… a single matrix multiplication, but it takes a few instructions in
machine code, per pixel. SIMD could do each instruction on many
pixels at the same time.

CORNELL CS4414 - SPRING 2023 25

Rotate 3-D

SIMD LIMITATIONS

A SIMD system always has some limited number of CPUs for
these parallel operations.

Moreover, the computer memory has a limited number of
parallel data paths for these CPUs to load and store data

As a result, there will be some limit to how many data items the
operation can act on in that single step!

CORNELL CS4414 - SPRING 2023 26

INTEL VECTORIZATION
COMPARED WITH GPU
A vectorized computation on an Intel machine is limited to a
total object size of 64 bytes.
 Intel allows you some flexibility about the data in this vector.
 It could be 8 longs, 16 int-32’s, 64 bytes, etc.

In contrast, the NVIDIA Tesla T4 GPU we talked about in lecture 4 has
thousands of CPUs that can talk, simultaneously, to the special built-in
GPU memory. A Tesla SIMD can access a far larger vector or matrix in a
single machine operation.

CORNELL CS4414 - SPRING 2023 27

EXAMPLE: PHOTO ROTATION

With a SIMD approach, we can rotate “one raster at a time”

We would want each raster to be a fixed number of cache lines
in length, holding a fixed set of pixels per raster. We also need
the entire image object to start on a cache-line boundary, and
we need C++ to realize this.

Then we would get a 16x or 32x speedup!
CORNELL CS4414 - SPRING 2023 28

IRREGULAR SIZES?

They will be slower because C++ will generate a mix of pixel
by pixel operations and cache-line parallel SIMD ones.

It does this transparently… yet your code will run more slowly!

So… as the developer… you will be rewarded (by a speedup)
for designing code to have the ideal properties!

CORNELL CS4414 - SPRING 2023 29

… CS4414 IS ABOUT PROGRAMMING A
NUMA MACHINE, NOT A GPU
So, we won’t discuss the GPU programming case.

But it is interesting to realize that normal C++ can benefit from
Intel’s vectorized instructions, if your machine has that capability!

To do this we need a C++ compiler with vectorization support
and must write our code in a careful way, to “expose” parallelism

CORNELL CS4414 - SPRING 2023 30

… AND ABOUT ABSTRACTIONS

Unfortunately, we need new programming language ideas to do
a better job of abstracting parallelism opportunities

 Threads work well, and we’ll learn about them. Abstracted
 concurrency.

 But the kind of parallelism where one instruction triggers a
 “row” of micro-CPUs to transform a whole vector of data
 in one shot is simply not easy to “abstract”. Leveraging it
 feels very manuel (hands-on).

CORNELL CS4414 - SPRING 2023 31

THE INTEL VECTORIZATION INSTRUCTIONS

When the MMX extensions to the Intel x86 instructions were
released in 1996, Intel also released compiler optimization
software to discover vectorizable code patterns and leverage
these SIMD instructions where feasible.

The optimizations are only available if the target computer is an
Intel chip that supports these SIMD instructions.

CORNELL CS4414 - SPRING 2023 32

INITIALLY, C++ DID NOT SUPPORT MMX

It took several years before other C++ compilers adopted the MMX
extensions and incorporated the associated logic.

Today, C++ will search for vectorization opportunities if you ask for
it, via -ftree-vectorize or –O3 flags to the C++ command line.

… so, many programs have vectorizable code that doesn’t exploit
vector-parallel opportunities even on a computer than has MMX

CORNELL CS4414 - SPRING 2023 33

INTEL IS NOT THE ONLY CPU DESIGNER. GCC
IS NOT THE ONLY C++ COMPILER…
AMD and ARM are other major players in the CPU design
space. They have their own vector-parallel design, and the
instructions are different (but similar in overall approach).

Clang is another major C++ compiler. It aligns with GCC on
most things, but has slightly different rules for how it detects
opportunities to generate parallel code

CORNELL CS4414 - SPRING 2023 34

MODERN C++ SUPPORT FOR SIMD

Requires –O3 option to gcc (older option name: -ftree-vectorize)

You must write your code in a vectorizable manner: simple for
loops that access the whole vector (the loop condition can only
have a simple condition based on vector length), body of the
loop must map to the SIMD instructions.

CORNELL CS4414 - SPRING 2023 35

EXAMPLE OF A REQUIREMENT

A matrix should be “densely” layed out, in memory, and start on
a cache-line boundary (an address that is a multiple of 64)

We mentioned this earlier. Now we will see how it can be
harder than it sounds!

CORNELL CS4414 - SPRING 2023 36

EXAMPLE OF A REQUIREMENT

… Thought questions:

 Is a C++ std::vector<float> densely represented in memory?

 What about std::vector<std::vector<float>>?

 Do they start on cache-line boundaries? Even if so, will C++
 know this at compile time?

CORNELL CS4414 - SPRING 2023 37

WHY WOULD WE ASK THIS QUESTION?

When reading a table of
data (“a structured file”)
each line generally is
read into a
 std::vector<std::string>,
but this is easily converted
to a std::vector<float>

CORNELL CS4414 - SPRING 2023 38

std::vector<std::string> stringVector = {"3.14", "2.718", "42.0"};

 // Convert strings to floats
 std::vector<float> floatVector;
 for (const auto& str : stringVector) {
 try {
 float value = std::stof(str);
 floatVector.push_back(value);
 } catch (const std::invalid_argument& e) {
 // Handle invalid strings (e.g., non-numeric)
 std::cerr << "Error parsing string: " << str << std::endl;
 }
 }

… SO EACH ROW IS A STD::VECTOR<FLOAT>

A table with R rows becomes a vector of vectors! Suppose each
row has F floats in it.

std::vector<std::vector<float>>, with R*F entries in total

But to leverage parallel instructions, we need this to be
physically contigurous in memory

CORNELL CS4414 - SPRING 2023 39

HOW IS STD::VECTOR<FLOAT> “REPRESENTED”?

Internally, C++ has a small object holding the length, type and
a pointer to the actual data, which is allocated using malloc

CORNELL CS4414 - SPRING 2023 40

Length, “float”, *

17.8761 3.14152 1.416791 9.097199 4.82604

HOW IS STD::VECTOR<STD::VECTOR<FLOAT>> “REPRESENTED”?

Internally, C++ has a small object holding the length, type and a
pointer to the actual data, which is allocated using malloc

These four vectors might not be contiguous in memory! And unless
you use aligned_malloc, they might not be cache-line aligned!

CORNELL CS4414 - SPRING 2023 41

Length, “std::vector< float>”, *

REMINDER: DENSE IN-MEMORY ARRAY IS REPRESENTED
SEQUENTIALLY IN MEMORY

float myArray[4][3]

CORNELL CS4414 - SPRING 2023 42

1.111 2.222 3.333

4.444 5.555 ….

1.111

2.222

3.333

4.444

5.555

…

Smallest
address 32-bit float: 4 bytes each

Larger
addresses

…. AND THE MMX INSTRUCTIONS WANT A DENSE SEQUENCE!

float myArray[4][3]

CORNELL CS4414 - SPRING 2023 43

1.111 2.222 3.333

4.444 5.555 ….

1.111

2.222

3.333

4.444

5.555

…

Smallest
address 32-bit float: 4 bytes each

Larger
addresses

Eight floats per cache
line (64 / 4)

…. AND THE MMX INSTRUCTIONS WANT A DENSE SEQUENCE!

float myArray[4][3]

CORNELL CS4414 - SPRING 2023 44

1.111 2.222 3.333

4.444 5.555 ….

1.111

2.222

3.333

4.444

5.555

…

Smallest address
must be a multiple
of 64: “cache-line

aligned” data

32-bit float: 4 bytes each

Sixteen floats per cache
line (64 / 4)

Entire data object
should be an exact

multiple of 64

PARALLEL INSTRUCTIONS

They operate on an entire cache line in one shot, or two cache lines for
vector-vector operations
 Example: Multiply every float-32 by 2.5
 Example: Y = A + B
 Y = A + B*2.5 requires two instructions
 Can also perform row * column in one instruction

A cache-line is 64 bytes long, and a float-32 is a 4 byte object, so a single
instruction performs 16 operations

CORNELL CS4414 - SPRING 2023 45

HOW DOES IT HANDLE THE COLUMNS?

They aren’t “sequential in memory”, yet MMX also can handle
columns because rows have fixed length.

The distance from element k of column k to element k+1 will be
exactly the row length plus 1.

The feature is much faster if row length is power of 2, because it
allows MMX to “multiply” using shift-left, which is faster

CORNELL CS4414 - SPRING 2023 46

WHAT ABOUT NON-CACHE-LINE MULTIPLES

Cache-line boundary: A memory address that is a multiple of 64

C++ compiler will use one-by-one logic until it reaches a cache-
line boundary, then cache-line-at-a-time logic until there is less
than one cache-line of data still to do, then one-by-one again.

This is quite slow, and you’ll notice the slowdown if you measure

CORNELL CS4414 - SPRING 2023 47

AND NOW… A GLIMPSE OF
THIS WEEK’S RECITATION!

Material Alicia will
actually cover!

CORNELL CS4414 - SPRING 2023 48

THE COMPILER NEEDS YOUR HELP!

Random C++ code won’t be very vectorizable

But if you code in a careful way, you can arrange for your logic
to vectorize nicely. You need to give “hints” to help the compiler

C++ needs to be able to see that the data is properly cache
aligned, and dense in memory, and of fixed chunk-sizes that are
multiples of the cache-line length

CORNELL CS4414 - SPRING 2023 49

A HELPFUL DATATYPE DECLARATION:

For a vector or matrix declared inline, C++ will automatically
memory align it, and track that it did so.

For complex structures, declared inline, C++ might need help.
This example is GCC-specific but would work:

CORNELL CS4414 - SPRING 2023 50

__declspec(align(64)) struct Str1{
 int a, b, c, d, e;
};

WHAT ABOUT POINTERS?

For a pointer, use a declaration like this (GCC-specific):

CORNELL CS4414 - SPRING 2023 51

typedef double aligned_double __attribute__((aligned (16)));
// Note: sizeof(aligned_double) is 8, not 16
void some_function(aligned_double *x, aligned_double *y, int n)
{
 for (int i = 0; i < n; ++i) {
 // math!
 }
}

… BUT A WARNING

You could “lie” and it would result in strange program crashes

Once you promise to put an aligned pointer into your pointer
variable, C++ will trust that you did so, and will generate MMX
code that only works with an aligned pointer!

Type checking helps… but would be relatively easy to fool

CORNELL CS4414 - SPRING 2023 52

GNU C++ EXAMPLES THAT WOULD
PARALLELIZE AUTOMATICALLY
This simple addition
can be done in parallel.

The compiler will eliminate the
loop if a single operation suffices.
Otherwise it will generate one
instruction per “chunk”

CORNELL CS4414 - SPRING 2023 53

Example 1:
int a[256], b[256], c[256];
foo () {
int i;

for (i=0; i<256; i++){
a[i] = b[i] + c[i];

}
}

https://gcc.gnu.org/projects/tree-ssa/vectorization.html

https://gcc.gnu.org/projects/tree-ssa/vectorization.html

GNU C++ EXAMPLES THAT WOULD
PARALLELIZE AUTOMATICALLY
Here we see more difficult
cases

The compiler can’t predict
the possible values n could
have, making this code hard
to “chunk”

CORNELL CS4414 - SPRING 2023 54https://gcc.gnu.org/projects/tree-ssa/vectorization.html

Example 2:
int a[256], b[256], c[256];
foo (int n, int x) {
 int i;
 /* feature: support for unknown loop bound */
 /* feature: support for loop invariants */
 for (i=0; i<n; i++)
 b[i] = x;
 }
 /* feature: general loop exit condition */
 /* feature: support for bitwise operations */
 while (n- -){
 a[i] = b[i]&c[i]; i++;
 }
}

https://gcc.gnu.org/projects/tree-ssa/vectorization.html

GNU C++ EXAMPLES THAT WOULD
PARALLELIZE AUTOMATICALLY
Parallelizing a 2-d matrix
seems “easy” but in fact
data layout matters.

To successfully handle such
cases, the dimensions must
be constants known at
compile time!

CORNELL CS4414 - SPRING 2023 55https://gcc.gnu.org/projects/tree-ssa/vectorization.html

Example 8:
int a[M][N];
foo (int x) {
 int i,j;

 /* feature: support for multidimensional arrays */
 for (i=0; i<M; i++) {
 for (j=0; j<N; j++) {
 a[i][j] = x;
 }
 }
}

https://gcc.gnu.org/projects/tree-ssa/vectorization.html

GNU C++ EXAMPLES THAT WOULD
PARALLELIZE AUTOMATICALLY
This sum over differences
is quite a tricky operation
to parallelize!

C++ uses a temporary
object, generates the diff,
then sums over the temporary
array

CORNELL CS4414 - SPRING 2023 56https://gcc.gnu.org/projects/tree-ssa/vectorization.html

Example 9:
unsigned int ub[N], uc[N];
foo () {
 int i;

 /* feature: support summation reduction.
 note: in case of floats use -funsafe-math-optimizations
*/
 unsigned int diff = 0;
 for (i = 0; i < N; i++) {
 udiff += (ub[i] - uc[i]);
 }

https://gcc.gnu.org/projects/tree-ssa/vectorization.html

SUMMARY: THINGS YOU CAN DO

Apply a basic mathematical operation to each element of a
vector.

Perform element-by-element operations on two vectors of the
same size and layout

Apply a very limited set of conditional operations on an item by
item basis

CORNELL CS4414 - SPRING 2023 57

ADVICE FROM INTEL

Think hard about the layout of data in memory
 Vector hardware only reaches its peak performance for carefully
 “aligned” data (for example, on 16-byte boundaries).
 Data must also be densely packed: instead of an array of structures
 or objects, they suggest that you build objects that contain arrays of
 data, even if this forces changes to your software design.
 Write vectorization code in simple “basic blocks” that the compiler
 can easily identify. Straight-line code is best.
 “inline” any functions called on the right-hand of an = sign

CORNELL CS4414 - SPRING 2023 58

WITHIN THAT CODE…

On the right hand slide of expressions, limit yourself to accessing
arrays and simple “invariant” expressions that can be computed
once, at the top of the code block, then reused.

Avoid global variables: the compiler may be unable to prove to
itself that the values don’t change, and this can prevent it from
exploring many kinds of vectorization opportunities.

CORNELL CS4414 - SPRING 2023 59

LEFT HAND SIDE…

When doing indexed data access, try to have the left hand side
and right hand side “match up”: vectors of equal size, etc.

Build for loops with a single index variable, and use that
variable as the array index – don’t have other counters that are
also used.
 SIMD code can access a register holding the for-loop index, but
 might not be able to load other kinds of variables like counters

CORNELL CS4414 - SPRING 2023 60

THINGS TO AVOID

No non-inlined function calls in these vectorizable loops, other
than to basic mathematical functions provided in the Intel library

No non-vectorizable inner code blocks (these disable vectorizing
the outer code block)

No “data dependent” end-of-loop conditions: These often make
the whole loop non-vectorizable

CORNELL CS4414 - SPRING 2023 61

POTENTIAL SPEEDUP?

With Intel MMX SIMD instructions, you get a maximum speedup
of about 128x for operations on bit vectors.

More typical are speedups of 16x to 64x for small integers.

Future processors are likely to double this every few years

CORNELL CS4414 - SPRING 2023 62

FLOATING POINT

Given this form of vectorized integer support, there has been a
lot of attention to whether floating point can somehow be
mapped to integer vectors.

In certain situations this is possible: it works best if the entire
vector can be represented using a single exponent, so that we
can have a vector of values that share this same exponent, and
then can interpret the vector as limited-precision floating point.

CORNELL CS4414 - SPRING 2023 63

C++ VECTORIZATION FOR FLOATS

There is a whole ten-page discussion of this in the compiler
reference materials!

With care, you can obtain automatically vectorizable code for
floats, but the rules are quite complicated.

… However, GPU programming would be even harder!

CORNELL CS4414 - SPRING 2023 64

COULD THIS SOLVE OUR PHOTO ROTATION?

We can think of a photo as a flat 3-D object. Each pixel is a
square. A 3-D rotation is a form of matrix multiplication.

CORNELL CS4414 - SPRING 2023 65

TWO FLOATING POINT OPTIONS

We could “construe” our pixels as floating point numbers.

But we could also replace a floating point number by a rational
number.

For example: π ≅ 22/7. So, x*π ≅ (x*22)/7. We could relace
all operations involving π with 22/7: integer arithmetic!

CORNELL CS4414 - SPRING 2023 66

RATIONAL ARITHMETIC LETS US LEVERAGE
THE INTEL VECTOR HARDWARE
The Intel vector instructions only work for integers.

But they are fast, and parallel, and by converting rational
numbers to integers, we can get fairly good results.

Often this is adequate!

CORNELL CS4414 - SPRING 2023 67

THIS IS WIDELY USED IN MACHINE LEARNING!

We noted that many ML algorithms are very power-hungry

Researchers have shown that often they are computing with far more
precision than required and that reduced-precision versions work just
as well, yet can leverage these vector-parallel SIMD instructions.

These are available in reduced-precision ML libraries and graphics
libraries today.

CORNELL CS4414 - SPRING 2023 68

GPU VERSUS SIMD

Why not just ship the parallel job to the GPU?
 GPUs are costly, and consume a lot of power. A standard processor
 with SIMD support that can do an adequate job on the same task
 will be cheaper and less power-hungry.
 Even if you do have a GPU, using it has overheads:
 The system must move the data into the GPU. Like a calculator
 where you type in the data.

 Then it asks the GPU to perform some operation. “Press the button”
 Then must read the results out.

CORNELL CS4414 - SPRING 2023 69

NEW-AGE OPTIONS

These include TPU accelerators: “tensor processing units”

FPGA: A programmable circuit, which can be connected to other
circuits to build huge ultra-fast vision and speech interpreting
hardware, or blazingly fast logic for ML.

RDMA: Turns a rack of computers or a data center into a big NUMA
machine. Every machine can see the memory of every other machine

CORNELL CS4414 - SPRING 2023 70

An earlier “new age”

STEPPING BACK WE FIND… CONCEPTUAL
ABSTRACTION PATTERNS.
When you look at a computer, like a desktop or a laptop, what
do you see?

Some people just see a box with a display that has the usual
applications: Word, Zoom, PowerPoint…

Advanced systems programmers see a complex machine, but
they think of it in terms of conceptual building blocks.

CORNELL CS4414 - SPRING 2023 71

SPEED VERSUS PORTABILITY

One risk with this form of abstract reasoning is that code might
not easily be portable.

We are learning about SIMD opportunities because most
modern computers have SIMD instruction sets (Intel, AMD, etc).

A feature available on just one type of computer can result in a
style of code that has poor performance on other machines.

CORNELL CS4414 - SPRING 2023 72

APPLICATIONS CAN HAVE BUILT-IN CHECKS

If you do create an application that deliberately leverages
hardware such as a particular kind of vectorization, it makes
sense to have unit tests that benchmark the program on each
distinct computer.

The program can then warn if used on an incompatible platform:
“This program has not been optimized for your device, and may
perform poorly”.

CORNELL CS4414 - SPRING 2023 73

SUMMARY

Understanding the computer architecture, behavior of the
operating system, data object formats and C++ compiler
enables us to squeeze surprising speedups from our system!

Because SIMD instructions have become common, it is worth
knowing about them. When you are able to leverage them, you
gain speed and reduce power consumption.

CORNELL CS4414 - SPRING 2023 74

	In search of an abstract way to think about Parallelism
	Idea Map For Today
	Modern systems are full of opportunities for parallism
	A few Ways to obtain parallelism
	Embarassing parallelism
	Opportunities for parallelism
	Opportunities for Parallelism
	But the example as shown has a “gotcha”!
	How is an in-memory array represented?
	But the example as shown has a “gotcha”!
	How bad could it be? … pretty bad!
	Opportunities for parallelism
	Disk reads?
	What Does this say about “requirements” for the maximum degree of parallelism?
	Issues raised by launching Threads: “unnoticed” sharing
	Issues raised by launching Threads: “unnoticed” sharing
	… locking can involve waiting (STALLS).
	… locking can involve waiting. This is one example of a thread “stalling”
	Any form of stalling reduces parallelism
	Parallel solutions may also be harder to create due to extra steps required
	More costs of parallelism
	Image and tensor processing
	Concept: SISD versus SIMD
	Concept SISD versus SIMD
	Side remark
	SIMD limitations
	Intel vectorization�compared with GPU
	Example: Photo rotation
	Irregular sizes?
	… CS4414 is about programming a NUMA machine, not a GPU
	… and about abstractions
	The Intel Vectorization Instructions
	Initially, C++ did not support MMX
	Intel is not the only CPU designer. GCC is not the only C++ compiler…
	Modern C++ support for SIMD
	Example of a requirement
	Example of a requirement
	Why would we ask this question?
	… so each row is a std::vector<float>
	How is std::vector<float> “represented”?
	How is std::vector<std::vector<float>> “represented”?
	Reminder: Dense in-memory array is represented sequentially in memory
	…. And the MMX instructions want a dense sequence!
	…. And the MMX instructions want a dense sequence!
	Parallel instructions
	How does it handle the columns?
	What about non-cache-line multiples
	And now… a glimpse of this week’s recitation!
	The compiler needs your help!
	A helpful datatype declaration:
	What about pointers?
	… but a warning
	GNU C++ examples that would parallelize automatically
	GNU C++ examples that would parallelize automatically
	GNU C++ examples that would parallelize automatically
	GNU C++ examples that would parallelize automatically
	Summary: Things you can do
	Advice from Intel
	Within that code…
	Left hand side…
	Things to avoid
	Potential speedup?
	Floating Point
	C++ vectorization for floats
	Could this solve our photo rotation?
	Two floating point options
	Rational arithmetic lets us leverage the Intel vector hardware
	This is widely used in machine learning!
	GPU versus SIMD
	New-age options
	Stepping back we find… conceptual abstraction patterns.
	Speed versus portability
	Applications can have built-in Checks
	Summary

