
MEMORY MANAGEMENT Professor Ken Birman
CS4414 Lecture 5

CORNELL CS4414 - SPRING 2023 1

IDEA MAP FOR TODAY

CORNELL CS4414 - SPRING 2023 2

Understanding where an
object resides is very
important in modern
systems. In C++, you can’t
write correct code unless
you master this topic

Global objects live in data segments

Inline objects live on the stack

Dynamically created objects live in the heap

Address space for a Linux process:
many kinds of segments

If time permits: How malloc
manages the heap

WHAT HAPPENS WHEN YOU RUN A COMMAND?

Linux really has three concepts of what a command can be

1. The bash shell has some built-in commands

2. You can take any sequence of commands and put them in a
file, change its mode to “executable”, and then the file name
behaves like a Linux command. You can even pass it
arguments, include loops, etc!

3. A compiled program, perhaps starting with C++ source

CORNELL CS4414 - SPRING 2023 3

WHAT HAPPENS WHEN YOU RUN A PROGRAM?

Bash sees that you are trying to execute a program – it finds the
file and checks, and learns that it is an executable (and
remembers this, for quicker future responses)

Bash uses Linux to prepare an address space and then load and
execute the program in the new address space. This is done with
the fork and exec systems calls. (Both have several variants).

CORNELL CS4414 - SPRING 2023 4

We’ll discuss later… details not important today

ADDRESS SPACE?

Every program runs in an isolated address context.

Within it, the addresses your program sees are “virtual”. They
don’t match directly to addresses in physical memory.

A “page table” managed by Linux maps virtual to physical, at a
granularity that would usually be 4k (4096) bytes per page.

CORNELL CS4414 - SPRING 2023 5

A page is a 4K
block of memory

0

…

… PAGES ARE GROUPED INTO SEGMENTS

Rather than just treating memory as one range of pages from
address 0 to whatever the current size needed might be, Linux is
segmented. There are often gaps between them.

Definition: A segment is just a range of virtual memory with some
base address, and some total size, and access rules.

One segment might be as small as a single page, or could be huge
with many pages. We don’t normally worry about page boundaries

CORNELL CS4414 - SPRING 2023 6

A FEW SEGMENT TYPES LINUX SUPPORTS

Code: This kind of segment holds compiled machine instructions

Data: Uses for constants and initialized global objects

Stack: A stack segment is used for memory needed to call
methods, or for inline variables (I’ll show you an example).

Heap: A heap segment is used for dynamically allocated
memory that will be used for longer periods (again, I’ll show you)

Mapped files: The file can be accessed as a byte[] vector!

CORNELL CS4414 - SPRING 2023 7

GAPS

The address space will often have “holes” in it.

These are ranges of memory that don’t correspond to any
allocated page.

If you try and access those regions, you’ll get a segmentation
fault and your process will crash.

CORNELL CS4414 - SPRING 2023 8

STACKS, HEAPS

Our programs often need to dynamically allocate memory to
hold new objects. Later they might free that memory.

The stack and the heap are two resources for doing this.

CORNELL CS4414 - SPRING 2023 9

STACKS VERSUS HEAPS

A stack is a managed region of memory that has a concept of a
stack pointer. You “push” objects on the stack, and the stack
pointer changes (the value gets smaller) by the size of the object

… later you “pop” the object and the stack pointer gets larger.

CORNELL CS4414 - SPRING 2023 10

In Linux, stacks always grow from big
addresses down towards small addresses

Stack pointer points
to the top element

Bottom Bottom
77

Push 77
Bottom

77

… pop 91

91

Bottom
77

Stack segment encloses the entire stack.
But not all of it is “in use”

Push 91

… HEAPS

A heap is a memory region allocated via malloc(size)/free. Access
the memory via pointers. Use a “static cast” to tell C++ what type of
data your region will hold.

It is important to learn the associated concepts if these are new to you!

The C++ operators include the * operator, as in *ptr = 17, and the →
operator (typed as –>). * is used for vectors or arrays. → is used if
your memory region holds a data structure of some kind.

CORNELL CS4414 - SPRING 2023 11

… HEAPS

C++ trusts you to

 Allocate the proper number of bytes

 Stay within the bounds of the allocated region

NUMA heaps: Linux maintains one heap region (pool) per DRAM
module, tries put your new memory “close” to your thread.

CORNELL CS4414 - SPRING 2023 12

WHAT ABOUT OBJECTS IN THE HEAP?

In C++ all objects need to live somewhere, and the heap is a
very common choice.

The C++ keyword new will automatically do the malloc and
then call the object constructor. Later you call delete.

But you can also call malloc “by hand” if needed.

CORNELL CS4414 - SPRING 2023 13

INITIALIZATION IS VERY IMPORTANT!

Malloc doesn’t zero or initialize the region. In C++ we normally use
objects with constructors that initialize the fields to desired values.

For this reason, new memory won’t be automatically zeroed: that
would be wasted work. A program’s data segment is initially zero,
but that is really a special case.

Of course you can always zero a memory region “by hand”

CORNELL CS4414 - SPRING 2023 14

YOUR C++ PROGRAM “CONTROLS” WHERE
THE VARIABLES IT USES WILL LIVE

// This is typical of what you might find in a .hpp file

// The example describes a class called Cat, with some fields and methods

int cat_count; // Global: Lives in a data segment

class Cat { // Definition: Used only by g++
public:

int cat_id; // The object will have space for a 32-bit int
std::string name; // … and for a “string object”
Cat(std::string given_name) ; // Constructor to initialize a new Cat instance

};

CORNELL CS4414 - SPRING 2023 15

YOUR C++ PROGRAM “CONTROLS” WHERE
THE VARIABLES IT USES WILL LIVE
// In the .cpp file, we give these values

int cat_count = 0; // Global: Lives in a data segment

Cat::Cat(std::string given_name) { // Constructor to initialize a new Cat instance
Cat::name = given_name;
Cat::cat_id = cat_count++;

}
}

CORNELL CS4414 - SPRING 2023 16

YOUR C++ PROGRAM “CONTROLS” WHERE
THE VARIABLES IT USES WILL LIVE
external Cat fluffy; // Global, initialized “elsewhere”

external int cat_count;

Cat irma(“Irma”); // Global, initialized here. Object will live in data segment

int main(int argc, char** argv) {

Cat streetcat(“Grizabella”); // Stack, created now, actually on the stack.
// The object will be deallocated when scope exits

Cat *catptr = new Cat(“Mistophelles”); // Heap! Remains allocated until you call delete

}

CORNELL CS4414 - SPRING 2023 17

Scope: The execution block in
which the variable is accessible

PUZZLE: WHERE IS THE BYTE[] FOR STRINGS?

We used std::string to hold the cat names. Where is the memory?

Internally, a std::string includes a pointer to a character array: a
byte vector, terminated with a null byte (‘\0’).

But where is the string itself, in memory?
You can access it as the c_str()…

CORNELL CS4414 - SPRING 2023 18

In the heap! std::string makes a copy
using malloc and memcpy

If you copy a std::string, a heap char
string is made by the copy constructor

MALLOC AND FREE

You don’t see it, but internally, C++ implements new using
malloc, and delete using free. These are library methods built
in C that manage pools of memory: one per DRAM module on
your NUMA computer.

Notice that new and delete are not needed for global or stack-
allocated objects. Question: why not?

CORNELL CS4414 - SPRING 2023 19

GLOBAL AND STACK ALLOCATION

A global object will be assigned space in the data segment.
The compiler handles this, and runs the constructor either at
compile time, or (if the constructor uses things that aren’t
constants), when the program starts execution.

A stack allocated object will be assigned a chunk of space on
the stack when the line of code executes to create the object.
The constructor runs when this occurs.

CORNELL CS4414 - SPRING 2023 20

THE STACK IS ALSO USED FOR METHOD CALLS

Roles of the stack:
Hold return PC
Hold stack-allocated data
Hold values of registers that will temporarily be used
but then restored to whatever was previously in them
Hold method arguments that don’t fit into registers
Hold results from a method, if the result is “large”

CORNELL CS4414 - SPRING 2023 21

CALLING A METHOD…

C++ generates code to put arguments into registers, or onto the
stack. It has its own rules to decide which case applies.

The Intel hardware automatically pushes the caller’s PC to the
stack. Later it uses this to return to where the call was done.

On return, Intel pops the PC from the stack. C++ pops anything
it pushed, and we are back to the state from before the call.

CORNELL CS4414 - SPRING 2023 22

C++ NOTATIONS FOR ACCESSING THINGS

C++ has a concept of a “namespace” used to understand the
variable you are referencing.

For example, std::queue is a reference to a class called queue that
was defined in the standard library (std:: means “standard”)

Pronunciation hint: Ken just says “st-it-id” for std::

CORNELL CS4414 - SPRING 2023 23

VARIABLES VERSUS POINTERS

Suppose some variable cat is in the current scope, and we
access it. Some examples:

auto cat2 = cat; // Constructs a copy

cid = cat.cat_id; // References a member

auto cptr = &cat; // Creates a pointer to cat

CORNELL CS4414 - SPRING 2023 24

POINTER: A VARIABLE HOLDING AN
ADDRESS
A pointer variable has a 64-bit number in it: a memory location.

You need to make sure it points to a sensible place!

But then can access members, like cptr → cat_id. (*cptr).cat_id
is equivalent: (*cptr) “is” the cat object that cptr points to.

CORNELL CS4414 - SPRING 2023 25

ACCESS BY REFERENCE
Often you see methods with types like this:

int sum(const int& a, const int& b) { return a+b; }

The & “a will be a reference to the argument” Thus, a acts like a
second name – an alias – for the argument supplied by the caller.

The by reference notation, &, can only be used if the passed
argument is a variable – it could appear on the left side of an “=“

CORNELL CS4414 - SPRING 2023 26

C++ ALLOWS REFERENCE RETURN VALUES

For example, you can write a method that returns a reference to
some object that is in an array, or even one it just created!

But beware…. A reference or pointer to an object on the stack
will be “unsafe” if that stack scope terminates!

And a reference or pointer into the heap is only valid as long as
you haven’t deleted the object in the heap that it points to!

CORNELL CS4414 - SPRING 2023 27

ARRAYS USE A FORM OF REFERENCES

C++ has two concepts of array indexing.

If myvec is of type int[10], then myvec[k] is the k’th element.
Note that C++ doesn’t check for illegal index values!

But you can also “overload” the [] operator for classes of your
own. For example, cat.litter[k] could be the k’th kitten in a list.

CORNELL CS4414 - SPRING 2023 28

Overloaded operators become method calls,
to methods defined by the class

SHARED_PTR

When working with pointers, people often call malloc, but then
forget to call free. C++ isn’t garbage collected, so the
malloc’ed objects will linger for as long as the program runs.

This is called a memory leak. The heap segment grows and
grows. Eventually a process can run out of space and crash.

CORNELL CS4414 - SPRING 2023 29

SHARED_PTR

Professional C++ developers prefer not to use pointers directly.
We “wrap” them in a shared_ptr template.

With a shared_ptr, when the object has no more references to it,
the delete method is called automatically.

This adds garbage collection to C++, in a controlled form!

CORNELL CS4414 - SPRING 2023 30https://docs.microsoft.com/en-us/cpp/cpp/how-to-create-and-use-shared-ptr-instances?view=vs-2019

SHARED_PTR

Example:
auto my_ptr = new shared_ptr<foo>(constructor args);

auto ptr_2 = my_ptr; // Auto-increments reference count!

When a shared_ptr goes out of scope, the reference count is
decremented automatically. Delete is called if it reaches 0.

CORNELL CS4414 - SPRING 2023 31

USE A SHARED_PTR LIKE ANY POINTER

Suppose foo has a field “name”.

With a foo* pt, you write pt→name; pt holds an address.

With a shared_ptr<foo> pt, you use the identical notation! The
shared pointer object holds the address of the foo object. By
overloading the → operator, the shared_ptr mimics a pointer!

CORNELL CS4414 - SPRING 2023 32

MEMORY LEAK

Suppose that your program includes code that might be causing
a memory leak.

The memory is consumed, but never released, so the heap gets
larger and larger. You’ll see this in “top” and your program will
slow down when the memory region gets really large.

Best tool for finding leaks: valgrind
CORNELL CS4414 - SPRING 2023 33

MALLOC IS “INEXPENSIVE” BUT NOT FREE

It maintains a big pool of memory and uses various techniques
to try and keep memory compact.
 Fragmentation. Refers to an accumulation of tiny chunks of memory

that can’t be reused because they are too small for most purposes.
 Compaction. Free looks for chances to combine small chunks into

larger ones, which are more likely to be useful in future mallocs.

This is different from garbage collection, which refers to mechanisms that
automatically free an object that no longer has any references to it.

CORNELL CS4414 - SPRING 2023 34

MALLOC/FREE IMPLEMENT DYNAMIC
MEMORY MANAGEMENT FOR C++
One worry: malloc is not infinitely fast and can be a bottleneck.

Many performance-intensive applications maintain freelists:
 Only use malloc if the free list is empty.
 This reduces the pressure on the malloc/free subsystem.

CORNELL CS4414 - SPRING 2023 35

HOW A FREELIST WORKS

When you create your class Foo, you also maintain a list of
pointers to freed Foo objects: std::list<Foo*> freelist;

Suppose fptr points to a Foo (allocated using new):
When finished with fptr, put it on the freelist (and don’t delete it). The

destructor won’t run: fptr is still in use.
 When you need another Foo, check to see if there is a free one on the

list. If so, reuse it instead of creating a new object.

CORNELL CS4414 - SPRING 2023 36

WHICH SEGMENTS HOLD WHICH KINDS OF
MEMORY?
Let’s tour the computer from the hardware “up”.

The NUMA computer has a big memory region that encompasses
all memory on the machine. Any thread with permission can
access any part of this memory (local memory is cheapest).

There may also be memory regions associated with devices such
as computer displays, cameras, etc.

CORNELL CS4414 - SPRING 2023 37

VISUALIZING AN ACTIVE PROCESS

CORNELL CS4414 - SPRING 2023 38

Thread, has an
associated stack

Stack

Code segment

void main(int argc, char* argv) { …. }

Data segment

int my_counter = 0;

DLL segment

C++ Standard Library

Data segment for DLL

Heap segment

Managed by malloc/free

DLL segment

Linux system calls

Data segment for DLL

Mapped File

DIFFERENT THREADS IN ONE PROCESS SHARE
THE SAME ADDRESS SPACE
The memory of a computer is actually linear, although with gaps
used in various ways by the hardware and operating system.

We “think” of the address space as if each thread was next to the
other threads, but if you look at the addresses each has its own
memory segment.

Linux manages a “mapping” from the addresses each process sees to
the actual physical memory. Called a “page table”.

CORNELL CS4414 - SPRING 2023 39

VISUALIZING AN ACTIVE PROCESS

CORNELL CS4414 - SPRING 2023 40

Stack
Shared DLL segment

C++ Standard Library

Shared Data segment for DLL

Heap segment

Managed by malloc/free

Shared DLL segment

Linux system calls

Shared Data segment for DLL
Threads, each has
an associated stack

Stack

Heap segment

Managed by malloc/free

Stack

Shared code segment

void main(int argc, char* argv) { …. }

Shared global data segment

int my_counter = 0;

One heap per RAM pool
Managed by malloc/free

Mapped File

DIFFERENT PROCESSES HAVE DISTINCT
ADDRESS SPACES
Each distinct process has its own address space mapping.

Thus an address can mean different things: my 0x10000 might
contain code for fast-wc, but your 0x10000 could be part of a
data segment.

The hardware knows which process is running, so it can use the
proper page table mapping to know which memory it wants.

CORNELL CS4414 - SPRING 2023 41

MAPPED FILES

We will discuss more in a future lecture.

But Linux has a system call that will map a file into memory so
that the bytes are directly accessible without doing read/write

For sharing between processes (particularly helpful across
programming languages!). Shared file are limited to one writer.

CORNELL CS4414 - SPRING 2023 42

VIRTUAL AND PHYSICAL MEMORY

The hardware allows us to “page out” chunks of memory to a
disk. If the process touches such a page, a “page fault” occurs.

Then the kernel loads the missing page and lets the process
resume execution.

When low on space, this can help… but it also can be costly!

CORNELL CS4414 - SPRING 2023 43

SOME SEGMENTS ARE SHARED BY MULTIPLE
PROCESSES
A mapped file appears in memory, like char* array. You can
access the bytes directly.

Linux picks the “base address” (hence the same file can easily
show up at different places in different processes!)

Changes are automatically rewritten back to the disk. Only one
process can do updates; others are “read only”

CORNELL CS4414 - SPRING 2023 44

SOME SEGMENTS ARE SHARED BY MULTIPLE
PROCESSES
Consider the standard C++ library. Lots of programs use it!

This segment is read-only, so more than one program can share
a single copy. We call it a “dynamically linked library” or DLL

We’ll learn how Linux implements DLLs later in the course.

CORNELL CS4414 - SPRING 2023 45

HOW SEGMENTS GROW

Heaps and stacks are the two kinds of segments that can grow as
needed, or shrink.

A stack has a limited maximum size, but Linux initially makes it small.
As methods call each other and stack space is needed, Linux finds
out and quietly grows the “top” of the stack.

This is a case of a “handled” segmentation fault. If you use up the
limit, then you get a “stack overflow” error, and a crash.

CORNELL CS4414 - SPRING 2023 46

HOW SEGMENTS GROW

The heap has an initial size, but can be expanded by calling the
“sbrk” Linux system call.

Malloc uses this to request extra space. The heap grows at the
bottom, towards larger addresses.

With NUMA, there is one heap per RAM, and memory is
allocated on a RAM close to the thread that called malloc.

CORNELL CS4414 - SPRING 2023 47

WHAT IF YOU ACCESS A SEGMENT ILLEGALLY?

The most notorious way for a process to crash in Linux is a
“segmentation fault”

This means it tried to read from an address that isn’t mapped into its
address space, or from an “unreadable” region (or write, or
execute).

Linux terminates the whole process and might also save a “core” file
for you to study using gdb to understand what crashed.

CORNELL CS4414 - SPRING 2023 48

DEEPER DIVE From the textbook,
if we have time

CORNELL CS4414 - SPRING 2023 49

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Mechanisms in Procedures
 Passing control
 To beginning of procedure code
 Back to return point

 Passing data
 Procedure arguments
 Return value

 Memory management
 Allocate during procedure execution
 Deallocate upon return

 Mechanisms all implemented with
machine instructions

 x86-64 implementation of a procedure
uses only those mechanisms required

P(…) {
•
•
y = Q(x);
print(y)
•

}

int Q(int i)
{
int t = 3*i;
int v[10];
•
•
return v[t];

}

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Mechanisms in Procedures
 Passing control
 To beginning of procedure code
 Back to return point

 Passing data
 Procedure arguments
 Return value

 Memory management
 Allocate during procedure execution
 Deallocate upon return

 Mechanisms all implemented with
machine instructions

 x86-64 implementation of a procedure
uses only those mechanisms required

P(…) {
•
•
y = Q(x);
print(y)
•

}

int Q(int i)
{
int t = 3*i;
int v[10];
•
•
return v[t];

}

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Mechanisms in Procedures
 Passing control
 To beginning of procedure code
 Back to return point

 Passing data
 Procedure arguments
 Return value

 Memory management
 Allocate during procedure execution
 Deallocate upon return

 Mechanisms all implemented with
machine instructions

 x86-64 implementation of a procedure
uses only those mechanisms required

P(…) {
•
•
y = Q(x);
print(y)
•

}

int Q(int i)
{
int t = 3*i;
int v[10];
•
•
return v[t];

}

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Mechanisms in Procedures
 Passing control
 To beginning of procedure code
 Back to return point

 Passing data
 Procedure arguments
 Return value

 Memory management
 Allocate during procedure execution
 Deallocate upon return

 Mechanisms all implemented with
machine instructions

 x86-64 implementation of a procedure
uses only those mechanisms required

P(…) {
•
•
y = Q(x);
print(y)
•

}

int Q(int i)
{
int t = 3*i;
int v[10];
•
•
return v[t];

}

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

 Procedures
 Mechanisms
 Stack Structure
 Calling Conventions
 Passing control
 Passing data
 Managing local data

 Illustration of Recursion

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon
Carnegie Mellon

x86-64 Stack

 Region of memory managed
with stack discipline
 Memory viewed as array of bytes.
 Different regions have different

purposes.
 (Like the format of Linux executable

files, a policy decision)

code

stack m
e
m
o
r
y

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon
Carnegie Mellon

x86-64 Stack

 Region of memory
managed with
stack discipline

Stack Pointer: %rsp

Stack “Bottom”
(an empty stack would start here)

code

stack

Stack “Top”
(things you push to the stack go here)

Textbook pictures
show the higher
stack addresses

on top, low on the
bottom.

Direction
of

growth

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

x86-64 Stack

 Region of memory managed
with stack discipline

 Grows toward lower addresses

 Register %rsp contains
lowest stack address
 address of “top” element

Stack Pointer: %rsp

Stack
Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

x86-64 Stack: Push

 pushq Src
 Fetch operand at Src
 Decrement %rsp by 8
 Write operand at address given by %rsp

Stack
Grows
Down

Increasing
Addresses

Stack “Bottom”

Stack Pointer: %rsp

Stack “Top”

val

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

x86-64 Stack: Push

 pushq Src
 Fetch operand at Src
 Decrement %rsp by 8
 Write operand at address given by %rsp

-8

Stack
Grows
Down

Increasing
Addresses

Stack “Bottom”

Stack Pointer: %rsp

Stack “Top”

val

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 popq Dest
 Read value at address given by %rsp
 Increment %rsp by 8
 Store value at Dest (usually a register)

Stack Pointer: %rsp

Stack
Grows
Down

Increasing
Addresses

Stack “Top”

Carnegie Mellon

x86-64 Stack: Pop

val

Stack “Bottom”

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 popq Dest
 Read value at address given by %rsp
 Increment %rsp by 8
 Store value at Dest (usually a register)

Stack Pointer: %rsp

Stack
Grows
Down

Increasing
Addresses

Stack “Top”

x86-64 Stack: Pop

+8

val

Stack “Bottom”

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 popq Dest
 Read value at address given by %rsp
 Increment %rsp by 8
 Store value at Dest (usually a register)

Stack Pointer: %rsp
Stack
Grows
Down

Increasing
Addresses

x86-64 Stack: Pop

val
(The stack pointer is updated but pop

leaves the value itself in memory)

Stack “Bottom”

Stack “Top”

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Thought question

 Why would we care that the value was not somehow “removed” or erased?

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Thought question

 Why would we care that the value was not somehow “removed” or erased?

 … if some other method allocates space on the stack but doesn’t initialize the
variables, their initial value will be taken from whatever was already there.

 In an application that has internal security rules about which methods can access
which data, this could conceivably allow some method to get at data, or a pointer, it
should not have been allowed to see!

 Some Linux hacks have taken advantage of this property.

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

 Procedures
 Mechanisms
 Stack Structure
 Calling Conventions
 Passing control
 Passing data
 Managing local data

 Illustration of Recursion

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Code Examples

long mult2(long a, long b)
{
long s = a * b;
return s;

}

void multstore(long x, long y, long *dest)
{

long t = mult2(x, y);
*dest = t;

}

0000000000400550 <mult2>:
400550: mov %rdi,%rax # a
400553: imul %rsi,%rax # a * b
400557: retq # Return

0000000000400540 <multstore>:
400540: push %rbx # Save %rbx
400541: mov %rdx,%rbx # Save dest
400544: callq 400550 <mult2> # mult2(x,y)
400549: mov %rax,(%rbx) # Save at dest
40054c: pop %rbx # Restore %rbx
40054d: retq # Return

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Procedure Control Flow

 Use stack to support procedure call and return
 Procedure call: call label
 Push return address on stack
 Jump to label

 Return address:
 Address of the next instruction right after call
 Example from disassembly

 Procedure return: ret
 Pop address from stack
 Jump to address

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Control Flow Example #1

0000000000400550 <mult2>:
400550: mov %rdi,%rax
•
•
400557: retq

0000000000400540 <multstore>:
•
•
400544: callq 400550 <mult2>
400549: mov %rax,(%rbx)
•
•

0x400544

0x120

•
•
•

%rsp

0x120

0x128

0x130

%rip

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Control Flow Example #2

0000000000400550 <mult2>:
400550: mov %rdi,%rax
•
•
400557: retq

0000000000400540 <multstore>:
•
•
400544: callq 400550 <mult2>
400549: mov %rax,(%rbx)
•
•

0x400550

0x118

0x400549

•
•
•

%rsp

0x120

0x128

0x130

0x118

%rip

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Control Flow Example #3

0000000000400550 <mult2>:
400550: mov %rdi,%rax
•
•
400557: retq

0000000000400540 <multstore>:
•
•
400544: callq 400550 <mult2>
400549: mov %rax,(%rbx)
•
•

0x400557

0x118

0x400549

•
•
•

%rsp

0x120

0x128

0x130

0x118

%rip

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Control Flow Example #4

0000000000400550 <mult2>:
400550: mov %rdi,%rax
•
•
400557: retq

0000000000400540 <multstore>:
•
•
400544: callq 400550 <mult2>
400549: mov %rax,(%rbx)
•
•

0x400549

0x120

•
•
•

%rsp

0x120

0x128

0x130

%rip

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

 Procedures
 Mechanisms
 tack Structure
 Calling Conventions
 Passing control
 Passing data
 Managing local data

 Illustrations of Recursion & Pointers

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Procedure Data Flow

Registers
 First 6 arguments

 Return value

Stack

 Only allocate stack space
when needed

%rdi

%rsi

%rdx

%rcx

%r8

%r9

%rax

Arg 7

• • •

Arg 8

Arg n

• • •

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Data Flow
Examples

long mult2
(long a, long b)

{
long s = a * b;
return s;

}

void multstore
(long x, long y, long *dest)
{

long t = mult2(x, y);
*dest = t;

}

0000000000400550 <mult2>:
a in %rdi, b in %rsi
400550: mov %rdi,%rax # a
400553: imul %rsi,%rax # a * b
s in %rax
400557: retq # Return

0000000000400540 <multstore>:
x in %rdi, y in %rsi, dest in %rdx
• • •
400541: mov %rdx,%rbx # Save dest
400544: callq 400550 <mult2> # mult2(x,y)
t in %rax
400549: mov %rax,(%rbx) # Save at dest
• • •

SUMMARY AND TAKE-AWAYS

Visualize your application as a collection of memory segments.

Some are restricted in various ways: read only, can or cannot
grow (and if so, from which end), executable.

Mapped files are a form of segment that allow distinct processes
to share memory (even if coded in different languages!)

CORNELL CS4414 - SPRING 2023 75

	Memory Management
	Idea map for today
	What happens when you run a command?
	What happens when you run a program?
	Address space?
	… pages are grouped into segments
	A few segment types Linux supports
	Gaps
	Stacks, Heaps
	Stacks versus Heaps
	… Heaps
	… Heaps
	What about objects in the heap?
	Initialization is very important!
	Your C++ program “controls” where the variables it uses will live
	Your C++ program “controls” where the variables it uses will live
	Your C++ program “controls” where the variables it uses will live
	Puzzle: Where is the byte[] for strings?
	Malloc and free
	Global and Stack allocation
	The stack is also used for method calls
	Calling a method…
	C++ Notations for accessing things
	Variables versus pointers
	Pointer: A variable holding an address
	Access by reference
	C++ allows reference return values
	Arrays use a form of references
	Shared_ptr
	Shared_ptr
	Shared_ptr
	Use a shared_ptr like any pointer
	Memory Leak
	Malloc is “inexpensive” but not free
	Malloc/free implement dynamic memory management for C++
	How a freelist works
	Which segments hold which kinds of memory?
	Visualizing an active process
	Different threads in one process share the same address space
	Visualizing an active process
	Different processes have distinct address spaces
	Mapped files
	Virtual and physical memory
	Some segments are shared by multiple processes
	Some segments are shared by multiple processes
	How segments grow
	How segments grow
	What if you access a segment illegally?
	Deeper Dive
	Mechanisms in Procedures
	Mechanisms in Procedures
	Mechanisms in Procedures
	Mechanisms in Procedures
	Today
	x86-64 Stack
	x86-64 Stack
	x86-64 Stack
	x86-64 Stack: Push
	x86-64 Stack: Push
	x86-64 Stack: Pop
	x86-64 Stack: Pop
	x86-64 Stack: Pop
	Thought question
	Thought question
	Today
	Code Examples
	Procedure Control Flow
	Control Flow Example #1
	Control Flow Example #2
	Control Flow Example #3
	Control Flow Example #4
	Today
	Procedure Data Flow
	Data Flow�Examples
	Summary and take-aways	

