
GETTING SPEED IN APPLICATIONS
WITH LOTS OF MOVING PARTS

Professor Ken Birman
CS4414 Lecture 3

CORNELL CS4414 - SPRING 2023 1

IDEA MAP FOR TODAY
Our word count scenario had a lot of stuff happening

 Reading files from the Linux-managed file system

 Scanning them line by line, counting word occurrences

 Sorting and printing the output

CORNELL CS4414 - SPRING 2023 2

Revisit the example
from lecture 1. C++
was faster because it

allowed Ken to
leverage parallelism

using threads.

Parallelism is a powerful tool, but
only gives a speedup if the

program itself is parallelizable.
Sequential bottlenecks limit

achievable speed

There are many “hidden”
opportunities for parallelism that

can benefit even a sequential
program. A good example is

prefetching in a cache

WHAT WE WILL (AND WON’T) COVER

This isn’t a programing course, or an intro to operating systems,
so I’m going to assume you do basically understand how to code
things, and data structures (hash-maps, trees…), file systems…

But I am interested in situations tasks with “lots of
moving parts” and multiple options to pick from.
What really shapes performance?

CORNELL CS4414 - SPRING 2023 3

A PHILOSOPHY OF PERFORMANCE

Make your code sleek and elegant and “standard”

Then experiment to find the bottlenecks

Fix them (even if your changes are less elegant). But don’t mess
with the rest of your program. If a change wouldn’t help in the
larger picture, why destroy that really beautiful code?

CORNELL CS4414 - SPRING 2023 4

GETTING THE LAY OF THE LAND…

Linux kernel has about 26M lines of code in 50,000 files.

Start by asking how fast this can possibly be done

 Small experiment: time cat {bunch of files} > /dev/null
 Slightly fancier: in N parallel tasks, read 50,000/N of them

 Fastest with 10-15 tasks. Linux needs 4.25s to read all the files!

 With N=1 will be sequential. Less “sys time” but takes 2m19s!

CORNELL CS4414 - SPRING 2023 5

INSIGHT

We won’t (can’t) outperform 4.5s on this machine.

New goal: Code should “keep up” with the incoming data.

Count in parallel as Linux file I/O loads files from disk

CORNELL CS4414 - SPRING 2023 6

SPLITTING LINES INTO “WORDS”

Define a word to be a sequence of A-Z, a-z, 0-9, _

Examples of words:

 for, which, if, else, define, int, float, …

 n, inode_table, fd

 0x61AFF00

CORNELL CS4414 - SPRING 2023 7

PART OF A SOLUTION IN “PURE LINUX”

1) Find all source files (they end in .c or .h)

2) Print (“cat”) each file

3) Line by line, map non-word-chars to blank, then map all blanks to
newline (\012). Long list of words… and blank lines

4) sort, count unique, sort again, print output

CORNELL CS4414 - SPRING 2023 8

HOW DID THE PROGRAMS WORK?

This version is easy to write but looks horrible:

CORNELL CS4414 - SPRING 2023 9

find . -type f \(-name '*.c' -o –name ‘*.h’\) -exec cat {} \; |
 tr -c '[A-Za-z0-9_ \012]' ' ' | tr -s '[]' '\012' | sort | uniq –c | sort –r –n

HOW DID THE PROGRAMS WORK?

This version is easy to write but looks horrible:

It uses what Linux calls a “pipe”. A process prints output to stdout
(normally, the console) but we “redirect” it to become stdin (input)
to another process. This uses 5 pipe operations: |

CORNELL CS4414 - SPRING 2023 10

find . -type f \(-name '*.c' -o –name ‘*.h’\) -exec cat {} \; |
 tr -c '[A-Za-z0-9_ \012]' ' ' | tr -s '[]' '\012' | sort | uniq –c | sort –r –n

VISUALIZING THE PURE LINUX SOLUTION

CORNELL CS4414 - SPRING 2023 11

…
mm_segment_t fs = get_fs();
set_fs(KERNEL_DS);

fd = (*syscall_open)(file, flags, mode);
if(fd != -1) {
 (*syscall_read)(fd, buf, size);
 (*syscall_close)(fd);
}
set_fs(fs);
…

…
fd
syscall_open
 file
flags
 mode
Fd
1
syscall_read
 fd
buf
 size
…

…
1
buf
fd
fd
fd
file
flags
mode
size
syscall_open
syscall_read
…

…
1 1
1 buf
3 fd
1 file
1 flags
1 mode
1 size
1 syscall_open
1 syscall_read
…

find . -type f \(-name '*.c' -o –name ‘*.h’\) -exec cat {} \; | tr -c '[A-Za-z0-9_ \012]' ' ' | tr -s '[]' '\012’ | sort | uniq –c | sort –r -n

…
fd
syscall_open
File

flags
mode
fd

1
syscall_read
fd
buf

size
…

LINUX COMMANDS ARE WAY TOO SLOW

It involves a chain of 6 processes linked by pipes.

Even so, quite slow.

… and didn’t even have the output ordering we desire! Sort
lacks a “descending, but ascending by name for ties” option

CORNELL CS4414 - SPRING 2023 12

#4: Pure Linux (buggy sort order)
real 2m38.965s
user 2m43.999s
sys 27.084s

WRITING A PROGRAM TO DO THIS

Same idea, but with a program, we “take control”

Now we can code for speed… to keep up with Linux file system

A program can fix the issue of wanting our output to be sorted
by (count,word) with descending count, but alphabetic for ties

CORNELL CS4414 - SPRING 2023 13

VISUALIZING THIS APPLICATION

Phase one: Count words in the file using a tree sorted by name
CORNELL CS4414 - SPRING 2023 14

…
mm_segment_t fs = get_fs();
set_fs(KERNEL_DS);

fd = (*syscall_open)(file, flags, mode);
if(fd != -1) {
 (*syscall_read)(fd, buf, size);
 (*syscall_close)(fd);
}
set_fs(fs);
…

…
fd
syscall_open
file
flags
mode
fd
1
syscall_read
fd
buf
size
…

Sorted by name

WHY A TREE? WHAT ABOUT A HASH TABLE?

A tree is an O(nLogn) structure. Hash table is O(1).

But for a hash table we need to estimate the approximate size
required. With 24M words… maybe 10-20 threads… hash
tables (one per thread) could be 2-4 GB of memory. Each.

Trees are more compact, so Ken picked std::map, a tree

CORNELL CS4414 - SPRING 2023 15

SORTING FOR DESIRED OUTPUT ORDER

CORNELL CS4414 - SPRING 2023 16

(3, fd) (1, buf)

Word Count

fd 3

buf 1

Sorted by name Re-sorted by (count, name)

Output

Phase two: Sort by (count,word), then print output

PYTHON, JAVA AND C++ ALL TURN OUT TO
HAVE PREBUILT TOOLS FOR EACH STEP

Every one of these steps can just use a standard library.

We end up with very elegant, concise code.

It looks pretty similar for all three languages

CORNELL CS4414 - SPRING 2023 17

LET’S START WITH PYTHON

Python has a built-in file scanner like find, string splitter, built in
vectors, and a vector sort. It doesn’t leverage hardware
parallelism.

One of our course staff
members (Lucy) coded this up…

CORNELL CS4414 - SPRING 2023 18

#3 Lucy’s Python version
real 1m30.857s
user 1m30.276s
sys 0.572s

WHAT ABOUT JAVA VERSUS C++?

Lucy also created a Java version. It compiles in two stages:

 First to Java byte code

 Then to machine code (JIT)

Both compilation steps are highly efficient, but there are some
situations in which Java can only know the type of an object at
runtime. This “runtime polymorphism” slows some libraries down.

CORNELL CS4414 - SPRING 2023 19

#2 Lucy’s Java version (no threads)
real 1m49.373s
user 3m16.950s
sys 8.742s

C++ VERSION?

We created two C++ versions.

Sagar’s was pure and quite fast; we posted the code on the
“extra materials” on our schedule web page.

Ken’s dropped into C for file I/O steps and went further than
Sagar in leveraging parallelism. This was fastest of all.

CORNELL CS4414 - SPRING 2023 20

#1: C++ using 24 parallel threads on 24 cores
real 4.645s
user 14.779s
sys 1.983s

QUALITY OF MACHINE CODE

Whether we use Python or Java or C++, at the end of the day
the computer executes machine code. We saw some last week.

Python itself is implemented in Java or C++ and compiled.

But Python interprets your code. This causes slowdown.

CORNELL CS4414 - SPRING 2023 21

RUNTIME TYPES VERSUS STATIC TYPES

With Java “interesting” things (like tree nodes, or strings) are objects.

Java object types are learned at runtime… this is called “reflection”.
Reflection has a cost, paid at runtime – programs run slower. There
are ways to speed reflection up, but overheads remain an issue.

C++ types are always fully known at compile time (statically). This
lets the compiler use type information to do code optimization.

CORNELL CS4414 - SPRING 2023 22

THREADS: A BIG TOPIC FOR CS4414

Think about a method that has no return value:

 do_something(args….);

A thread runs some method in parallel with its parent.
 “You set the table… I’ll get some chips and salsa”
 “You scan files 1…1000” … “I‘ll scan 1001…2000”

CORNELL CS4414 - SPRING 2023 23

VISUALIZING TASK-LEVEL PARALLELISM

CORNELL CS4414 - SPRING 2023 24

File System has 50,000 files in it

Computational
thread 1 processes
about 2000 files

Computational
thread 3 processes
about 2000 files

Computational
thread 2 processes
about 2000 files

Computational
thread 24 processes
about 2000 files

. . .

UNDERSTANDING THE TIMER OUTPUT

In this example, my program will run silently on 8 cores using 16
threads

The “real” (wall clock) time
was 18.469 seconds.

This is how long we waited for it to finish

CORNELL CS4414 - SPRING 2023 25

% time taskset 0xFF ./fast-wc -n16 -s

real 0m18.469s
user 0m43.406s
sys 0m18.203s

UNDERSTANDING THE TIMER OUTPUT

The “user” time measures compute
in my 16 threads. It can be as
much as 16*real time!

CORNELL CS4414 - SPRING 2023 26

% time taskset 0xFF ./fast-wc -n16 -s

real 0m18.469s
user 0m43.406s
sys 0m18.203s

WHY DID I SHOW EACH THREAD WITH ITS
OWN WORD-COUNT TREE?
A tree node needs to live somewhere in physical memory.

If each core builds its own word-count tree for files it scans, that
tree will be entirely in its local memory, and not shared.

We will see that sharing objects involves adding locking that
brings costs. Objects used by a single thread don’t need locking.

CORNELL CS4414 - SPRING 2023 27

DOWN SIDE OF HAVING 24 TREES…

… we end up with 24x more memory in use!

Linux had 4M “unique” words, but with 24 threads, only 27,000 words
are seen by half or more! 3.2M are seen by just 1 or 2 threads.

Suppose an average word-count node requires 64 bytes, and that we
end up with 250,000 nodes per thread. With 24 times will require
16MB x 24 = ~400MB. We have enough memory!

CORNELL CS4414 - SPRING 2023 28

DOWNSIDE OF HAVING 24 TREES…

At the end, we have 24 trees containing sub-counts.

Before sorting, we’ll need to merge them.

CORNELL CS4414 - SPRING 2023 29

WITH SORTED TREES, TREE MERGE IS “EASY”

For each node in tree B, look up that word in tree A, sum the
counts.

C++ is like Java or Python: it has “iterators” for data structures

Just a tiny for loop. But who should run it?

CORNELL CS4414 - SPRING 2023 30

EACH THREAD COMPUTES A PARTIAL WORD
COUNT ON A PORTION OF OUR DATA
Visualization: Thread 1 runs the merge step.

… this is linear: 23 merge operations. Can we do better?

CORNELL CS4414 - SPRING 2023 31

PARALLEL BINARY MERGE
In this picture, we merge from
the bottom to the top

For 24 threads:
Merge [1,2] and [3,4] and … [23,24]
Then [1,3] ……………. [23, 24]

 …
Finally: [1, 13]

CORNELL CS4414 - SPRING 2023 32

1 2 3 4

1 3

Starts at the bottom

1 Ends at the very top

Threads 2 and 4 have no
more work and terminate

Thread 3 terminates

PARALLEL BINARY MERGE
In this picture, we merge from
the bottom to the top

For 24 threads:
Merge [1,2] and [3,4] and … [23,24]
Then [1,3] ……………. [23, 24]

 …
Finally: [1, 13]

CORNELL CS4414 - SPRING 2023 33

1 2 3 4

1 3

Starts at the bottom

1 Ends at the very top

Threads 2 and 4 have no
more work and terminate

Thread 3 terminatesRule: Each thread t has a variable k and initializes
k = t (its own thread-id in [1…n]). Initialize s to 1.

do {
 If (k is even) { thread t terminates. }
 else { merge tree t + s into tree t; }
 k >>= 1; s <<= 1;
} until (all trees merged into tree 1);

WORTH IMPLEMENTING?

My program offers parallel merge (-p). It helps… a tiny bit.

Issue: my C++ version was really bottlenecked by file I/O. No
matter how fast the threads run, the “sys 18.203s” remains!

C++ tricks can’t reduce runtime below 18.203s without some
way of improving the efficiency of parallel file I/O!

CORNELL CS4414 - SPRING 2023 34

% time taskset 0xFF ./fast-wc -n16 -s

real 0m18.469s
user 0m43.406s
sys 0m18.203s

Time spent in Linux:
File I/O

REMINDER: TREE OR HASH LIST?

Now we can answer the question from slides 12/13/14

In fact replacing our tree with a hash list probably wouldn’t
help: the file I/O bottleneck wouldn’t be impacted.

The real-time speed limit is ultimately the need to read all the
files (unless Linux already had them in the file system cache)

CORNELL CS4414 - SPRING 2023 35

NEW CHALLENGE: KEEP EVERYTHING
RUNNING SIMULTANEOUSLY!
Finding the bottleneck can be difficult

Even our little merge program has many moving parts
 All those threads, building trees
 But also the work Linux is doing when the threads open files and
 read them.

Which is the limiting stage of our complete “system” (fast-wc + Linux)?

CORNELL CS4414 - SPRING 2023 36

Finding the bottleneck can be difficult

TERMINOLOGY

A bottleneck: “the limiting factor” for some task… we don’t really
use the term for a “balanced” task that has no limiting spot.

Compute-bound: The task is bottlenecked (limited) by the speed of
calculations on some kind of in-memory data.

I/O bound: The task is bottlenecked on fetching data from some
kind of storage device, or over the network.

CORNELL CS4414 - SPRING 2023 37

bottleneck

OUR CHALLENGE: NOT JUST DATA STRUCTURES
AND PARALLELISM, BUT BOTTLENECKS

How can we identify the bottlenecks that limit performance?

Can we even measure the degree of parallelism we are
achieving?

 In fact Linux has tools we can use for that.

 We’ll be learning about them!

CORNELL CS4414 - SPRING 2023 38

AMDAHL’S LAW

Gene Amdahl was a leading research on parallelism and
supercomputing in IBM’s HPC division.

He became interested in a basic question. How fast can
computations be performed, with infinite parallelism?

CORNELL CS4414 - SPRING 2023 39

Gene on the family farm in Norway

A DAY TRIP TO NIAGARA FALLS

You and your friends want to check out Niagara falls.

There are six of you. One option
is to rent a plus-sized car (but
those big vehicles are slow)

CORNELL CS4414 - SPRING 2023 40

A DAY TRIP TO NIAGARA FALLS
Better plan: You rent three convertible sports cars.
Each holds two people, and these are “insanely fast”.

 But as you head north, the narrow road has a

 bottleneck! Until you all pass this slow tractor, the

 group will have to wait.

CORNELL CS4414 - SPRING 2023 41
Gene Amdahl’s Tractor in Norway

HOW AMDAHL THOUGHT ABOUT PARALLELISM

In any computation, we have some parts that are highly parallel, such
as scanning our 74,000 different files. Parallelism can speed those up.

But the computation will also have sequential tasks, which could include
sequential logic buried in the operating system or the hardware.

The sequential work will limit the speedup due to parallelism!

CORNELL CS4414 - SPRING 2023 42

HOW AMDAHL EXPRESSED HIS LAW

Suppose that p represents the percentage of the task that can be
parallelized.

Then 1/(1-p) is the maximum
possible speedup

Insight: The parallel tasks could all be done|
simultaneously, yet we would still
have to do the sequential parts step by step.

CORNELL CS4414 - SPRING 2023 43

WHAT WOULD BE SEQUENTIAL IN OUR
WORD-FREQUENCY APPLICATION?
Each distinct word-count tree is managed by code that does
“find or insert” and “increase the count” operations.

Those individual operations will be sequential.

CORNELL CS4414 - SPRING 2023 44

WHAT ELSE WOULD BE SEQUENTIAL IN OUR
WORD COUNT APPLICATION?
Once we have our single tree, we have to re-sort it, because we
wanted our printed output to have common words at the top.

Ken and Sagar both needed a second sorted tree for this.

In fact, counting and the final sort both have identical cost!

CORNELL CS4414 - SPRING 2023 45

THE FILE SYSTEM ENDS UP VERY BUSY!

These threads are opening and reading a lot of files

Can the file system keep up?

If not, our threads won’t be active…

CORNELL CS4414 - SPRING 2023 46

THE FILE SYSTEM ENDS UP VERY BUSY!
This is a famous issue with Linux. For example, Google and
Facebook have Linux servers holding huge collections of web
pages or photos.

They ended up putting images into “strips” to reduce the load
on the file system.

CORNELL CS4414 - SPRING 2023 47

FILE ACCESS COSTS: TWO ASPECTS

Each file has to be opened, which is a moment when Linux
checks that the user has permission to access the file.

Once the file is open, it takes time to read and process data.

When reading, the fast-wc application does many “system calls”

CORNELL CS4414 - SPRING 2023 48

FILE ACCESS COSTS: TWO ASPECTS

With 24 threads doing concurrent reads, the file system is doing
a lot of data fetches from the disk (in “blocks” of 4096 bytes)

If those reads become a bottleneck, our threads will pause and
we lose parallelism.

CORNELL CS4414 - SPRING 2023 49

HOW THE LINUX FILE SYSTEM IS
STRUCTURED
User level programs can’t access
files “directly”. They use Linux.

The implementation is modular
with multiple layers, but notice
the various caches: inodes,
buffers and directories.

CORNELL CS4414 - SPRING 2023 50

Virtual File System

User
space

Kernel
space

CACHE: A CONCEPT USED THROUGHOUT COMPUTING

A pool of memory holding copies of data that “lives” elsewhere.

 The Linux buffer pool is a cache of data read from files. Each
 time data is read, Linux keeps a copy (for a while). If it fills up,
 Linux will “evict” something else to make room.

 If the application re-reads that same data Linux can
 avoid the need to fetch it from the storage device again.

CORNELL CS4414 - SPRING 2023 51

PREFETCHING INTO A CACHE

Linux also watches for sequential read patterns: you read the
first 4096 bytes from a file, then the next 4096, then the next…

Linux will bet that you plan to continue doing this and issues one
or two reads ahead of time, saving the data in cache.

Question: In what way is this a form of “parallelism”?

CORNELL CS4414 - SPRING 2023 52

PREFETCHING INTO A CACHE

Linux also watches for sequential read patterns: you read the
first 4096 bytes from a file, then the next 4096, then the next…

Linux will bet that you plan to continue doing this and issues one
or two reads ahead of time, saving the data in cache.

Question: In what way is this a form of “parallelism”?

CORNELL CS4414 - SPRING 2023 53

Why is prefetching a form of parallelism?

Answer: It lets us overlap the work of finding and reading
the next block of the file (the next 4096 bytes) with the
word-counting logic for the current block.

WHY PREFETCHING AND CACHING HELP

Modern disks (SSD and rotating disks!) have large delays compared
to memory access. 0.1ms or more delay.

Without a high rate of cache hits, we would spend 1 second (or
longer) waiting for disk read requests to complete

With prefetching into the Linux buffer pool, we don’t experience
those 0.1ms delays. Our threads keep running

CORNELL CS4414 - SPRING 2023 54

IN FACT THE CPU ITSELF USES CACHES AND
PREFETCHING, TOO!
A modern CPU has multiple caches:

 L0: the registers. C++ might “cache” data in them

 L1 instruction and data cache: much larger, slightly slower
 pair of caches used by the the CPU.

 L2,L3 data caches: shared by CPUs in one core (L2) or
 the entire NUMA computer (L3)

 Main memory: In modules; largest, but slowest to access

CORNELL CS4414 - SPRING 2023 55

PERFORMANCE DIFFERS ENORMOUSLY!

Accessing L1 cache on the Dell server I used as an example last
time: 2 or 3 clock cycles. The clock runs at 3GHz.
Accessing the L2 cache takes 12 or 13 clock cycles
L3 access jumps to perhaps 40-75 clock cycles. The actual
delay depends on how heavily loaded the memory bus is.
If we need to go to the memory module, there are two cases:
the closest memory module will require125 clock cycles to
access. A remote memory module takes 250 clock cycles.

CORNELL CS4414 - SPRING 2023 56

IDEAL CASE

All of our 24 cores are busy (one thread each). But maybe some
are busy in the kernel, not in my user code.

Each word-count thread is hard at work counting on the current block

At every level of the memory hierarchy, prefetching is anticipating
the next instruction needed, next data needed, next block of file
data needed, and already loading it.

CORNELL CS4414 - SPRING 2023 57

HYPERTHREADING?

No simple, universal answer

In Ken’s word-count, hyperthreading suggests that we should try
with 48 cores (2 x 24). But in fact this doesn’t help

In fact hyperthreading helps only for very specific cases,
detailed in the CPU user manual.

CORNELL CS4414 - SPRING 2023 58

SUMMARY?

Plenty of opportunities for parallelism….

… yet it didn’t feel embarrassingly easy! In fact it was hard.

This is not an unusual experience.

CORNELL CS4414 - SPRING 2023 59

	Getting Speed in applications with lots of moving parts
	Idea map for today
	What we will (and won’t) cover
	A philosophy of performance
	Getting the lay of the land…
	Insight
	Splitting lines into “words”
	Part of a solution in “pure Linux”
	How did the programs work?
	How did the programs work?
	Visualizing The pure linux solution
	Linux commands are way too slow
	Writing a program to do this
	Visualizing this application
	Why a tree? What about a hash table?
	Sorting for desired output order
	Python, Java and C++ all turn out to have prebuilt tools for each step
	Let’s start with Python
	What about Java versus C++?
	C++ Version?
	quality of machine code
	Runtime types versus static types
	Threads: A big topic for CS4414
	Visualizing task-level Parallelism
	Understanding the timer output
	Understanding the timer output
	Why did I show each thread with its own word-count tree?
	Down side of having 24 trees…
	Downside of Having 24 Trees…
	With sorted trees, Tree merge is “easy”
	Each thread computes a partial word count on a portion of our data
	Parallel Binary merge
	Parallel Binary merge
	Worth implementing?
	Reminder: Tree or hash list?
	new challenge: keep everything�running simultaneously!
	Terminology
	Our challenge: Not just data structures and parallelism, but bottlenecks
	Amdahl’s Law
	A Day Trip to Niagara Falls
	A Day Trip to Niagara Falls
	How Amdahl thought about parallelism
	How AmDahl Expressed his law
	What would be sequential in our �word-frequency application?
	What else would be sequential in our word count application?
	The file system ends up very busy!
	The file system ends up very busy!
	File access costs: Two aspects
	File access costs: Two aspects
	How the Linux file System is structured
	Cache: A concept used throughout computing
	Prefetching into a cache
	Prefetching into a cache
	Why Prefetching and caching help
	In fact the CPU itself uses caches and prefetching, too!
	Performance differs enormously!
	Ideal case
	Hyperthreading?
	Summary?

