
WELCOME TO CS4414
SYSTEMS PROGRAMMING

Professor Ken Birman
Lecture 1

CORNELL CS4414 - SPRING 2023. 1

THE MODERN COMPUTING WORLD IS COMPLEX!

“Cloud” computing systems at an insane scale, truly huge

So many moving parts…

New concept: SYSML. This relates to the idea that we are
creating systems to assist machine learning.

CORNELL CS4414 - SPRING 2023. 2

REASONS WE CARE ABOUT PERFORMANCE

Modern forms of computing are very power-hungry! And this is
causing growing impact on the global “electricity footprint”
associated with popular ways of solving problems.

Future of civilization might depend on whether your code can
minimize the amount of electricity it consumes!

https://venturebeat.com July 15, 2020
https://energyinnovation.org/2020/03/20/how-much-
energy-do-data-centers-really-use/

CORNELL CS4414 - SPRING 2023. 3

Roughly 1% of global electric use, doubling
roughly every 2 years!

https://venturebeat.com/2020/07/15/mit-researchers-warn-that-deep-learning-is-approaching-computational-limits/
https://energyinnovation.org/2020/03/17/how-much-energy-do-data-centers-really-use/
https://energyinnovation.org/2020/03/17/how-much-energy-do-data-centers-really-use/

COMPUTE TIME TO TRAIN ML MODELS

2-year doubling (Moore’s Law)

3.4-month doubling

How much of this is really
due to inefficient use of the
language and hardware?

Probably a lot!

CORNELL CS4414 - SPRING 2023. 4

SOME CARS HAVE INSANE SPEED BUTTONS…

 Guess what? So do
 computers!

 In CS4414 we’ll push the button.

 (in ways that are correct, secure, natural, elegant)

CORNELL CS4414 - SPRING 2023. 5

SMART USE OF THE “PLATFORM” IS HOW!

In CS4414 we will be learning about the Linux operating
system. Linux is universal these days.

We will use C++ 20 as our programming language. You can
go with C++ 23 if you prefer, and we will switch to it in 2025.

And we’ll learn to write code in smart ways that use the
hardware and software “ideally” to get the best possible speed.

CORNELL CS4414 - SPRING 2023. 6

HOW WE THINK OF THIS IN CS AT CORNELL

CORNELL CS4414 - SPRING 2023. 7

Great skills
on a single

NUMA server

Modern PL
and

compilation
tools

Networking

Distributed
Systems

Databases

Cloud
Computing

Great skills
on a cloud

HOW WE THINK OF THIS IN CS AT CORNELL

CORNELL CS4414 - SPRING 2023. 8

Modern PL
and

compilation
tools

Networking

Distributed
Systems

Databases

Cloud
Computing

Great skills
on a cloud

Great skills
on a single

NUMA server

 Writing code that can perform
 extremely well and keep the CPU
 busy in a productive way

 Learning to leverage concurrency
 in a correct, secure, effective way

 Understanding ways of “taking
 control” over the hardware and the
 OS so they will be ideally effective

AGENDA FOR THIS FIRST LECTURE?

A glimpse of this entire complicated, huge, crazy puzzle!

What does it even mean to “be in control” of the computer and
the OS and the disk?

Why start with C++ and Linux?

CORNELL CS4414 - SPRING 2023. 9

“IDEA MAP” FOR THE WHOLE SEMESTER

CORNELL CS4414 - SPRING 2023. 10

Hardware: Capable of
parallel computing, offers a
NUMA runtime environment

with multiple CPU cores.

Linux: The operating system
“manages” the computer for us

and translates hardware features
into elegant abstractions.

The application must express your ideas in an elegant, efficient
way using a language that promotes correctness and security

while mapping cleanly to the hardware
Linux abstractions expose that hardware in easily used forms.

We favor C++ 20 here. It isn’t the only option
(Rust is cool, for example), but we’ll use C++ 20
because industry seems to like it. C++ 20 is very

stable, but C++ 23 will eventually replace it

WHEN YOU WRITE A PROGRAM, DOES IT
MATTER HOW IT GETS EXECUTED?
Most people are familiar with Java and Python

Java has lots of data types (and lots of fancy syntax!), generics,
other elaborate language features and compiles to a mix of
machine code and programming language runtime logic.

Python is easier: No need to fuss with data types, easy to create
arrays and transform all the objects with just one step.

CORNELL CS4414 - SPRING 2023. 11

WHEN YOU WRITE A PROGRAM, DOES IT
MATTER HOW IT GETS EXECUTED?
Most people are familiar with Java and Python

Java has lots of data types (and lots of fancy syntax!), generics,
other elaborate language features and compiles to a mix of
machine code and programming language runtime logic.

Python is easier: No need to fuss with data types, easy to create
arrays and transform all the objects with just one step.

Which is better?
1) Java
2) Python

… why?

CORNELL CS4414 - SPRING 2023. 12

CONSIDERATIONS PEOPLE OFTEN CITE

Expressivity and Efficiency: Can I code my solution elegantly
and easily? Will my solution perform well?

Correctness: If I end up with buggy code, I’ll waste time (and my
boss won’t be happy). A language should facilitate correctness.

Productivity: A language is just a tool. The easier it is to do the
job (which is to solve some concrete problem), the better!

CORNELL CS4414 - SPRING 2023. 13

A SUBTLE CONSIDERATION: MODULARITY
AND COMPOSITIONALITY
Don’t fix things that already work. Ideally, we want the system
to provide lots of pre-packaged solutions for common tasks.

As a systems person, I’m very focused on this idea of pre-
packaged modular solutions.

Modern machine learning forces us to think in these terms!

CORNELL CS4414 - SPRING 2023. 14

MICROSOFT FARMBEATS EXAMPLE

How many
programs are
in use here?

… hundreds!
A modern computing applications is a software ecosystem

CORNELL CS4414 - SPRING 2023. 15

… THIS IS THE COMPLICATION

As we deal with larger and larger scale, the “modules” won’t be
simple things like a library that deals with managing a sorted list

We may need to “compose” entire programs or even systems,
which will need to share files or perhaps “objects”.

… the programming language is just a part of this ecology

CORNELL CS4414 - SPRING 2023. 16

DRILL-DOWN CONSIDERATIONS

We want our solutions to perform well and “scale well”.

For many tasks this involves working on the “cloud” (big remote
data centers, like AWS or Microsoft Azure or Google).

In the cloud you rent the machines you need, as needed, but pay
for what you use. So performance ≅ $$$.

CORNELL CS4414 - SPRING 2023. 17

DRILL-DOWN CONSIDERATIONS

We want our solutions to perform well and “scale well”.

For many tasks this involves working on the “cloud” (big remote
data centers, like AWS or Microsoft Azure or Google).

In the cloud you rent the machines you need, as needed, but pay
for what you use. So performance ≅ $$$.

Which performs better?
1) Java
2) Python
3) … something else?

… why?

CORNELL CS4414 - SPRING 2023. 18

WHY LINUX? DOES THE O/S EVEN MATTER?

When building “interesting” applications we often
put a few building blocks together, Lego style.

Linux is full of small, easily used building blocks for common tasks,
and has easy ways to connect things to make a bigger application
from little pieces.

Productivity rises because you often don’t need to build new code –
you can just use these existing standard programs in flexible ways.

CORNELL CS4414 - SPRING 2023. 19

LINUX AND THE HARDWARE: TWO
SIDES OF THE SYSTEM ARCHITECTURE

We will be learning about the modern computer hardware, not so
much from an internals perspective, but as users.

Linux lets you design applications that correspond closely to the
hardware. But then we need a programming language that lets us
talk directly to the operating system and the hardware.

CORNELL CS4414 - SPRING 2023. 20

WHY ARE PYTHON AND JAVA EXPENSIVE?

Python: Interpreted
Compiles to a high-level representation that
enables an “interpretive” execution model.

In fact, Python is like a “general machine”
controlled by your code: Python itself runs on
the hardware. Then your code runs on Python!

Gradual typing: Python is very laissez-faire
and can’t optimize for specific data types.

Java: Runtime overheads
Compiles (twice: to byte code, then via JIT) but
rarely exploits full power of hardware. Limited
optimizations, parallelism

Dynamic types and polymorphism are costly.

Everything is an object, causing huge need for
copying and garbage collection.

It feels as if your programs run inside layers
and layers of “black boxes”

CORNELL CS4414 - SPRING 2023. 21

HOW DOES C++ AVOID THESE PITFALLS?

C++ objects are a compile-time feature. At runtime, all the type-
related work is finished: no runtime dynamics.

The compiler “inline expands” and infers types, which makes coding
easier. Then it optimizes heavily. You help it.

Computers execute billions of instructions per second, yet we can
write code that will minimize the instructions and shape the choices.

Parallelism is easy, and the compiler automatically leverages modern
hardware features to ensure that you will have highly efficient code.

CORNELL CS4414 - SPRING 2023. 22

LET’S DRILL DOWN ON SPEED

For some situations, C++ can be thousands of times faster than
Python or Java, on a single machine!
 Typically, these are cases where the application has a lot of
 parallelism that the program needs to exploit.
 For example, identifying animals in a photo entails a lot of
 steps that involve pixel-by-pixel analysis of the image
 But in fact, we can get substantial speedups just scanning
 large numbers of big files… hence our word-count demo

CORNELL CS4414 - SPRING 2023. 23

PARALLELISM

… in fact, it is very hard to exploit parallelism in a single Python
program.

This is because the Python model is “single threaded”. Even so,
PyTorch is highly parallel, because it leverages GPUs.

Java does allow parallelism, via “parallel threads”

CORNELL CS4414 - SPRING 2023. 24

LET’S DRILL DOWN ON SPEED

We said that Python is slowest, Java is pretty good, but C++ can
beat both. C++ knocks the socks off Java for parallel tasks.

What would be a good way to “see that in action”?

A small example: “word count” in Python, Java and C++

CORNELL CS4414 - SPRING 2023. 25

WORD COUNT TASK

Basically, we take our input files and “parse” them into words. All
three languages have prebuilt library methods for this. Discard non-
words (things like punctuation marks).

Keep a sorted list of words. As we see a word, we look it up and
increment a count for that word (adding it if needed).

At the end, print out a nicely formatted table of the words/counts in
descending order by count, alphabetic order for ties

CORNELL CS4414 - SPRING 2023. 26

THE PARTICIPANTS

Ken, back when he was kind of new to C++

Sagar, our head PhD TA in the early days, who was a hard-
code C++ coder, spent two summers as a Microsoft employee.

Lucy, undergraduate coding superstar

CORNELL CS4414 - SPRING 2023. 27

THE SCOREBOARD

#1-A: Ken’s C++ Faster, but more complex…
real 4.645s
user 14.779s
sys 1.983s

#1-B (Sagar’s code, shorter & better use of C++…)
real 8.200s
user 49.295s
sys 2.145s

#3 Lucy’s Java version (no threads)
real 1m49.373s
user 3m16.950s
sys 8.742s

#2 Lucy’s Python version
real 1m30.857s
user 1m30.276s
sys 0.572s

This was only 19 lines of code!

#4: Pure Linux (buggy sort order)
real 2m38.965s
user 2m43.999s
sys 27.084s

CORNELL CS4414 - SPRING 2023. 28

THE SCOREBOARD

#1-A: Ken’s C++ Faster, but more complex…
real 4.645s
user 14.779s
sys 1.983s

#1-B (Sagar’s code, shorter & better use of C++…)
real 8.200s
user 49.295s
sys 2.145s

#3 Lucy’s Java version (no “true” threads)
real 1m49.373s
user 3m16.950s
sys 8.742s

#2 Lucy’s Python version
real 1m30.857s
user 1m30.276s
sys 0.572s

This was only 19 lines of code!

#4: Pure Linux (buggy sort order)
real 2m38.965s
user 2m43.999s
sys 27.084s

CORNELL CS4414 - SPRING 2023. 29

C++ version was 34x faster than
Linux, 20x faster than Java or Python

THE SCOREBOARD

#1-A: Ken’s C++ Faster, but more complex…
real 4.645s
user 14.779s
sys 1.983s

#1-B (Sagar’s code, shorter & better use of C++…)
real 8.200s
user 49.295s
sys 2.145s

#3 Lucy’s Java version (no “true” threads)
real 1m49.373s
user 3m16.950s
sys 8.742s

#2 Lucy’s Python version
real 1m30.857s
user 1m30.276s
sys 0.572s

This was only 19 lines of code!

#4: Pure Linux (buggy sort order)
real 2m38.965s
user 2m43.999s
sys 27.084s

CORNELL CS4414 - SPRING 2023. 30

Notice that the user time is 3x
larger than the real time.

Puzzle: how can this be true?

HOW CAN A PROGRAM DO 14.7779S
OF COMPUTING IN 4.645S?
Could this just be a measurement mistake in Linux?

… in fact, if a process is using more than one thread it can
harness more than one CPU at the same time.

With 3 CPUs running continuously at full speed, it can do 3x
more work than the elapsed wall-clock time!

CORNELL CS4414 - SPRING 2023. 31

A 3-horsepower system

QUICK DIVE INTO WORD COUNT IN C++

We’ll learn all of this over a few weeks

But today, we already might have a glimpse.

CORNELL CS4414 - SPRING 2023. 32

EXAMPLE: HELLO WORLD IN C++

CORNELL CS4414 - SPRING 2023. 33

// My first C++ program

#include<iostream>

int main() {
 std::cout << "Hello World“ << std::endl;
 return 0;
}

First you’ll create a file, hello.cpp

Next, it must be compiled, for example:

g++ -std=c++20 hello.cpp –o hello

… and finally, launched:
./hello
Hello World

We will be doing these steps from within Visual Studio Code

This “IDE” includes support for editing, compiling, debugging and executing your programs.

EXAMPLE: WORD COUNT IN C++
This is the “core” of the counting logic:

CORNELL CS4414 - SPRING 2023. 34

using WC = std::map<std::string, int>;
WC sub_count[MAXTHREADS];

inline void found(int& tn, char*& word)
{
 sub_count[tn][std::string(word)]++;
}

EXAMPLE: WORD COUNT IN C++
… and here is the core of the sorting logic:

CORNELL CS4414 - SPRING 2023. 35

struct SortOrder: public std::binary_function<std::pair<int, std::string>, std::pair<int, std::string>, bool>
{
 bool operator()(const std::pair<int, std::string>& lhs, const std::pair<int, std::string>& rhs) const
 {
 return lhs.first > rhs.first || (lhs.first == rhs.first && lhs.second < rhs.second);
 }
};

using SO = std::map<std::pair<int, std::string>, int, SortOrder>;
SO sorted_totals;
for(auto wc: totals)
{
 std::pair<int,std::string> new_pair(wc.second, wc.first);
 sorted_totals[new_pair] = wc.second;
}

EXAMPLE: WORD COUNT IN C++
Same logic but expressed using the c++2a decltype feature

CORNELL CS4414 - SPRING 2023. 36

using SO = std::map<std::pair<int, std::string>, int,
 decltype([](const std::pair<int, std::string>& lhs, const std::pair<int, std::string>& rhs)
 {return lhs.first > rhs.first || (lhs.first == rhs.first && lhs.second < rhs.second); })>;

SO sorted_totals;

for(auto wc: totals)
{
 std::pair<int,std::string> new_pair(wc.second, wc.first);
 sorted_totals[new_pair] = wc.second;
}

MY CODE VERSUS SAGAR’S

My code understood that in files, data is just a long “vector” of
characters – bytes – with some ‘\n’ characters (end of line).

My word-count kept the data in that form and only created
std::string objects at the last moment, to increment the count:
“wptr” is a pointer
directly to the bytes
in the input buffer

CORNELL CS4414 - SPRING 2023 37

inline void found(int& tn, char*& wptr)
{
 sub_count[tn][std::string(wptr)]++;
}

Used in the hacking competition for lecture 1. All source code is on our web site!

A CHUNK OF LINUX SOURCE CODE

Notice: this has text (words)
but also lots of other stuff, like
spaces and tabs, special chars
like (){};/_&* etc.

End of line is a special ascii
char, ‘\n’ (code == 0x12).

CORNELL CS4414 - SPRING 2023 38

VISUALIZATION OF MY WORD COUNT RUNNING

CORNELL CS4414 - SPRING 2023 39

Some file with Linux source
code, like

…/kernel/dma/contiguous.c

Memory buffer

Ken’s word-count process, when running

Read data into memory from disk file

WHAT DO WE MEAN BY “READ DATA INTO MEMORY?”

In my program, some space gets allocated – set aside – in the
address space as a place for file data to be held.

The program opened a source file and told Linux to copy 4096
bytes (one block) into that buffer area.

The text that you saw in that screenshot was stored there as a series
of ascii bytes, a code that uses values 0..128

CORNELL CS4414 - SPRING 2023 40

HOW MY CODE ACTUALLY WORKED

Change all “white space” to \0 (byte containing 0). Now each
word is a null-terminated char* vector (a “c-string”)

Converted from a c-string to std::string in found:

CORNELL CS4414 - SPRING 2023 41

int ret;\nchar name[CMA_MAX_NAME];\nstruct cma **cma =

int\0ret\0\0\0char\0name\0CMA_MAX_NAME\0\0\0struct\0 cma\0\0cma\0

wptr found(current_thread_id, wptr);

sub_count[tn][std::string(word)]++;

WHEN I FIRST CODED MY SOLUTION, MY
PROGRAM WAS VERY SHORT, BUT RATHER SLOW.

I added parallel threads – which complicated the solution but
helped a lot. Then because file opening was slow, I added a
thread to “preopen” files before they were needed.

The C++ library for file opening and reading files was a
bottleneck, so I switched to calling Linux file open and Linux file
read, directly. This gave an additional speedup

CORNELL CS4414 - SPRING 2023. 42

WHAT MADE SAGAR’S VERSION SLOWER?

If you look at his code, you’ll find that it converts the whole file
into std::string objects, line by line

Then it splits lines into substrings using a “splitter” method. Each
chunk will be a std::string. But many won’t be “words”

If the substring matching the rule for a word, Sagar’s code uses
a map like Ken’s code and increments the count.

CORNELL CS4414 - SPRING 2023 43

WHAT MADE SAGAR’S CODE SLOWER?

This means Sagar was creating perhaps 5-10x more std::string
objects. At scale, with 50,000 files and millions of lines to scan,
he does a lot of object creation, splitting and deletion, copying,
garbage collection. Ken’s code “skipped” 95% of that work!

… So Ken’s code was way faster!
Yet Sagar’s was closer to being pure
C++. Ken’s mixed C++ with C

CORNELL CS4414 - SPRING 2023 44

THE SCOREBOARD

#1-A: Ken’s C++ Faster, but more complex…
real 4.645s
user 14.779s
sys 1.983s

#1-B (Sagar’s code, shorter & better use of C++…)
real 8.200s
user 49.295s
sys 2.145s

#3 Lucy’s Java version (no “true” threads)
real 1m49.373s
user 3m16.950s
sys 8.742s

#2 Lucy’s Python version
real 1m30.857s
user 1m30.276s
sys 0.572s

This was only 19 lines of code!

#4: Pure Linux (buggy sort order)
real 2m38.965s
user 2m43.999s
sys 27.084s

CORNELL CS4414 - SPRING 2023. 45

Total compute “load” was actually
a lot lower for Ken’s C++ program.

Hence… less energy consumed

CENTRAL MESSAGE HERE?

Understanding how the machine is representing your data can
really matter if you want that last factor of 2x (or sometimes
even 10x or 100x). Even C++ itself might miss that opportunity

So we need to learn about how NUMA computers represent
data, and how our C++ code compiles to instructions that
execute to perform the tasks we are coding!

CORNELL CS4414 - SPRING 2023 46

HOW CAN WE “ANTICIPATE” THE COSTS OF
TOO MANY USES OF STD::STRING?
We know that a file is basically a long vector of bytes.

A text file holds ascii chars with ‘\n’ for newline. A c-string is a
region holding chars, ending with ‘\0’. Ken worked from this.

In contrast, a std::string is an object. At a minimum it has a string
length and its own copy of the c-string holding the string data. It must
be constructed and freed. That has to be costly.

CORNELL CS4414 - SPRING 2023 47

HOW COSTLY?

It wasn’t a huge effect

Yet because Sagar created a std::string for every “non-word”
operator, plus braces, etc, he created a LOT of unneeded strings

And this added up to a surprising overhead!

CORNELL CS4414 - SPRING 2023. 48

FINAL VERSION

With threads, my code was “part way” to the goal.

Thinking about bottlenecks, I decided to add one more parallel
computing idea (we’ll see it soon). Then I changed some of my
very heavily-used methods to be “inlined”

This gave that 20x-30x compared to Python and Java.

CORNELL CS4414 - SPRING 2023. 49

DIDN’T I PROMISE “THOUSANDS X”
HOW DID THAT DROP TO 30X?
We counted words in text files: Limited parallelism.

The C++ program is able to process them in parallel side-by-
side streams, which was how we got the speedup.

With image processing or machine learning (tensor arithmetic),
the value of parallel processing is dramatically larger.

CORNELL CS4414 - SPRING 2023. 50

PARALLELISM IN YOUR COMPUTER

A modern computer has multiple smaller computers (cores) that
all run on the same computer memory (RAM). It may also have a
special form of “accelerator” called a GPU.

To leverage this power, the computer offers special hardware
instructions. The compiler can use those for big speedups. You
can also use “threads”: a method of having more than one
computational activity running within a single program.

CORNELL CS4414 - SPRING 2023. 51

6-core Intel chip with GPU

PARALLELISM IN YOUR COMPUTER

A modern computer has multiple smaller computers (cores) that
all run on the same computer memory (RAM). It may also have a
special form of “accelerator” called a GPU.

To leverage this power, the computer offers special hardware
instructions. The compiler can use those for big speedups. You
can also use “threads”: a method of having more than one
computational activity running within a single program.

CORNELL CS4414 - SPRING 2023. 52

TOPIC FROM BEYOND CS4414:
CLOUD COMPUTING TAKES THIS FURTHER
For compute-intensive tasks, companies set up an account on a big
commercial data center called a cloud. “Rent, don’t own”.

You can easily run a program on hundreds of thousands of
computers, each instance processing different input files.
 So a single job might have millions of threads working in
 parallel, and each using parallel computing instructions!
 … the hard part is when they need to combine their results.

CORNELL CS4414 - SPRING 2023. 53

MODERN CLOUD COMPUTING DATA CENTER

CORNELL CS4414 - SPRING 2023. 54

ISSUES INTRODUCED BY LARGE SCALE

Program design: When we use networking to let processes talk
to one-another, they need ways to share data, cooperate,
coordinate, recover from failures.

Algorithmic: Just like in a single machine, there are more
efficient and less efficient data structures and “protocols”

Security: At scale it is common to run into new kinds of attacks,
and we need different styles of defense. Sensitive data is an
especially important concern (like private information).

CORNELL CS4414 - SPRING 2023. 55

AND YET…

Many jobs today involve larger scale computing platforms, even if
you don’t work “for” a cloud company.

A factor of 10x can be dramatic if the code is used by Google to
respond to a search or is part of the Facebook image feed.

C++ is the “way of progress” for demanding tasks.

CORNELL CS4414 - SPRING 2023. 56

First woman to win the
Nobel Prize

LEARNING LINUX AND C++

You came into this class comfortable in an object oriented language,
and learned data structures, so C++ should be easy to learn.

 The operators and syntax and features will remind you of Java

 There are extra operators, and those we will teach you, and things
 like dynamic memory management, but we won’t teach basics:
 those you need to learn in a hands-on way!

 Similarly, we will provide pointers to lists of Linux commands
 and bash syntax, but these are topics for experiential learning

CORNELL CS4414 - SPRING 2023. 57

ROLL YOUR OWN? OR LEARN SOME WEIRD
LIBRARY INTERFACE?
Once Sagar saw my version, he sped up his version, using more
std::xxx methods – he basically ended up with something more
standard.

Library solutions have the benefit of being standard, widely used,
and heavily tested.

C++ libraries are also exceptionally performant, and for our course
this is an important consideration!

CORNELL CS4414 - SPRING 2023. 58

WHY WOULD PEOPLE CARE ABOUT WORD
COUNTING IN A MODERN SYSTEM, LIKE FOR NLP?

Natural language programs are based on word counts, but :

 White space, punctuation, hyphenation is removed

 Conjunctions such as “a”, “and”, “or” are discarded

 Upper case is mapped to lower-case

 Stems are removed: “flying” might map to “fly”.

CORNELL CS4414 - SPRING 2023. 59

WHY DO NLP SYSTEMS CARE ABOUT STEMS?

When people do a web search such as “learn to fly small
plane” or “birds that cannot fly” small style differences arise.

Stems have been shown to be much more stable and consistent

Web pages for flying schools would probably use “fly” very
extensively. In contrast “that” and “to” are less relevant…

CORNELL CS4414 - SPRING 2023. 60

WHAT SHAPES THE PERFORMANCE OF
“STEMMED, LOWER-CASE WORD COUNT”?

 Speed of reading the data, especially if the file is large.
 At Google, some AI systems that learn from web pages scan
 hundreds of billions of them.
 Splitting, stemming, mapping to lower case, discarding conjunctions
 If we use new variables to hold stemmed words, we’ll need
 to “allocate” memory and initialize the object.
 We’ll need to keep a sorted list of words, and look for each
 word as we discover it, and increase the associated counter.

CORNELL CS4414 - SPRING 2023. 61

GLIMPSE OF LINUX AND BASH
This bash command runs c++, telling it to optimize the code,
warn in a “fussy” way.

 % g++ -std=c++11 -O3 -Wall -Wpedantic -pthread -o fast-wc fast-wc.cpp

This does a timed run of the program (fast-wc):
 % time taskset 0xFF ./fast-wc -n4 -p

CORNELL CS4414 - SPRING 2023. 62

fast-wc with 4 cores, 50095 files, 16 blocks per read, parallel merge ON
 define | 2008083
 struct | 1694853
 0 | 1268529
 if | 1202461

MORE FUN WITH BASH

In fact we can use bash to…
 Automatically open a file and have it look like “console input”
 in our C++ program.
 Put the program output into a file
 Run a program in the background
 Put the program output into a bash variable, and then pass
 that variable as a command-line argument to some other program
 … the list goes on for quite a while!

CORNELL CS4414 - SPRING 2023. 63

REMAINDER OF WORD COUNT IN C++

I didn’t show you:

 The standard includes required to import the std:: libraries

 The main program that calls the “getWordCount” method

 A bunch of little helper methods I wrote.

CORNELL CS4414 - SPRING 2023. 64

CONFUSED? NO WORRIES…

New ideas are always confusing, especially if seen rapidly.

We will revisit all of these concepts much more carefully soon

Today was a big-picture perspective, and we don’t expect you
to be able to do the same kind of thing… yet

CORNELL CS4414 - SPRING 2023. 65

PRACTICAL CONSIDERATIONS Organizational stuff

CORNELL CS4414 - SPRING 2023. 66

RECITATIONS MATTER!

In CS4414, we use the recitations to teach you C++ and Linux. We
require them and we test on the material they cover.

We also are asking the ugrad TAs to organize a few longer
“workshops” where they would problem solve while you watch (those
will be on Zoom and recorded).

C++ is easy but it takes time and help. And even a person who
knows C++ can learn new things from Alicia, Jonathan and Pengyue.

CORNELL CS4414 - SPRING 2023. 67

SETUP

We will have everyone using the same version of GCC and the
same version of Linux (Ubuntu)

This makes autograding possible, and also makes TA advising
easier.

CORNELL CS4414 - SPRING 2023. 68

YOU CAN LEARN IN GROUPS… BUT MUST
WORK ALONE
We encourage study groups. Learning as a group is great!

But… every single thing you do on a graded homework must be
done by you, and not with any help from friends or CourseHero or
other cheats. Graded work must be your individual work.

ChatGPT and similar bots are not particularly good at C++ so
you can use them safely, without it being cheating.

CORNELL CS4414 - SPRING 2023. 69

EXAMS (SOME), HOMEWORK

We use the exact same grading formula as CS4410: 50%
exams, 50% homework. There will be two prelims but no final.
Cornell exam schedules will show the exact dates, times and
rooms.

You are required to attend lectures. If people stop attending
we might give a snap quiz from time to time. Videos from prior
years are for catching up, not skipping lecture.

CORNELL CS4414 - SPRING 2023. 70

CURVE

We curve the course

Our feeling is that most students should easily be able to earn a
grade in the range from B- to A+. But A+ is “special” and not
strictly from a formula. The instructor decides how many to give.
Taking the final can never raise a grade from A to A+.

Grades below B- would only be used if a student really isn’t doing
well, especially if that person is also skipping lectures.

CORNELL CS4414 - SPRING 2023. 71

	Welcome to CS4414 �Systems Programming
	The modern computing world is complex!
	Reasons we care about performance
	Compute time to train ML models
	Some cars have insane speed buttons…
	Smart use of the “platform” is how!
	How we think of this in CS at Cornell
	How we think of this in CS at Cornell
	Agenda for this first lecture?
	“Idea map” for The whole semester
	When you write a program, does It matter how it gets executed?
	When you write a program, does It matter how it gets executed?
	Considerations people often cite
	A subtle consideration: Modularity and compositionality
	Microsoft FarmBeats Example
	… this is the complication
	Drill-down considerations
	Drill-down considerations
	Why Linux? Does the O/S even matter?
	Linux and the Hardware: two�Sides of the system architecture
	Why are Python and Java expensive?
	How does C++ avoid these pitfalls?
	Let’s Drill down on speed
	Parallelism
	Let’s Drill down on speed
	Word count task
	The participants
	The Scoreboard
	The Scoreboard
	The Scoreboard
	How can a program do 14.7779s �of computing in 4.645s?
	Quick dive into word count in C++
	Example: Hello World in C++
	Example: Word Count in C++�
	Example: Word Count in C++�
	Example: Word Count in C++�
	My code versus Sagar’s
	A chunk of Linux source code
	Visualization of my word count running
	What do we mean by “read data into memory?”
	How my code actually worked
	When I first coded my solution, my program was very short, but rather slow.
	What made Sagar’s version slower?
	What made Sagar’s Code Slower?
	The Scoreboard
	Central message here?
	How can we “anticipate” the costs of too many uses of Std::string?
	How costly?
	Final version
	Didn’t I promise “thousands x” �How did that drop to 30x?
	Parallelism in your computer
	Parallelism in your computer
	Topic from Beyond CS4414:�Cloud computing takes this further
	Modern Cloud Computing Data Center
	Issues introduced by large scale
	And yet…
	Learning Linux and C++
	Roll your own? Or learn some weird library interface?
	Why would people care about word counting in a modern system, like for nlp?
	Why do NLP systems care about stems?
	What shapes the performance of “stemmed, lower-case word count”?
	Glimpse of Linux and Bash
	More fun with bash
	Remainder of Word Count in C++
	Confused? No worries…
	Practical Considerations
	Recitations matter!
	Setup
	You can learn in groups… but must work alone
	Exams (some), Homework
	Curve

