
CS4414 Recitation 9
multi-threading I

10/25/2024

Alicia Yang

1

Multithreading

• What is concurrency

• Threads launching

• Thread finishing

• Threads safety
2

Concurrency

• What is concurrency?

• a single system performs multiple independent activities in parallel

• Why use concurrency?

• Separation of concerns

• Performance

Sequential
(No concurrency)

3

Types of concurrency

Concurrent Processes Concurrent Threads

4

Concurrency

https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

5

https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

Multithreading

• Threads:

• Threads are lightweight executions: each thread runs independently of the

others and may run a different sequence of instructions.

• All threads in a process share the same address space, and most of the

data can be accessed directly from all threads—global variables remain

global, and pointers or references to objects or data can be passed around

among threads.

6

Multithreading

• What is concurrency

• Threads launching
• std::thread

• (Thread pool)

• (openmp)

• Thread finishing

• Threads safety 7

Launching thread (via std::thread)

• Create a new thread object.

• Pass the executing code to be called (i.e, a callable object)

into the constructor of the thread object.

•Once the object is created a new thread is launched, it will

execute the code specified in callable

8
#include <thread> // part of the C++ Standard Library

• A callable types:

• A function pointer

• Free function (non-member function)

• Member function

• A function object (functor)

• A lambda expression

9https://en.cppreference.com/w/cpp/thread/thread/thread

Launching thread (via std::thread)

https://en.cppreference.com/w/cpp/thread/thread/thread

• Launching a thread using function pointers and function parameters

void func(params)
{
 // Do something
}

std::thread thread_obj(func, args);

Launching thread --- function pointer

10

Example1: function takes one argument

#include <thread>
void hello(std::string to)
{
 std::cout << "Hello Concurrent World to " << to << "\n";
}
int main()
{

 std::thread t1(&hello, "alicia");

 std::thread t2(hello, ”jonathan");
 t1.join();
 t2.join();
}

Launching thread --- function pointer

11

&(address-of) is optional
the function name decays to

function pointer automatically,
due to function-to-function-

pointer decay

Example2: function takes multiple arguments (passing by values, references)

• std::ref for reference arguments

#include <thread>
void hello_count(std::string to, int &x){
 x++;
 std::cout << "Hello to " << to << x << std::endl;
}
int main(){
 int x = 0;
 std::thread threadObj(hello_count, "alicia", std::ref(x));
 … // join
}

Launching thread --- function pointer

12

• A callable types:

• A function pointer

• Free function (non-member function)

• Member function

• A function object (functor)

• A lambda expression

13https://en.cppreference.com/w/cpp/thread/thread/thread

Launching thread (via std::thread)

https://en.cppreference.com/w/cpp/thread/thread/thread

• Suppose I have a class with an attribute x, a function print() that prints x.

• All objects of the class have their own copy of the non-static data members, but

they share the class functions.

• When I call print() on different objects, why are their behavior different?

How does calling a function on a class object work in C++?

class myClass{
public:
 int x;
 void print(){
 std::cout << x << std::endl;
 }
};

int main(){
 myClass obj;
 obj.print();
}

14

• All class functions automatically receive a pointer to the class object as their first

argument

• For example, myClass::print() behaves as if it’s written as myClass::print(myClass*

obj_ptr)

• All references to x in the function resolve as obj_ptr->x

Solution to the puzzle:

15

class myClass{
public:
 int x;
 void print(){
 std::cout << x << std::endl;
 }
};

int main(){
 myClass obj;
 obj.print();
}

• Launching a thread using (non-static) member function

class FunClass {
 void func(params) {
 // Do Something
 }
};
FunClass x;
std::thread thread_object(&FunClass::func, &x, params);

16

Launching thread --- member function pointer

• Example3: launching thread with (non-static) member function

class Hello
{
public:
 void greeting(std::string const &message) const{
 std::cout << message << std::endl;
 }
};

int main(){
 Hello x;
 std::string msg("hello");
 std::thread t(&Hello::greeting, &x, msg);
… // join} 17

Launching thread --- member function pointer

Multithreading --- managing thread

• A callable types:

• A function pointer

• A function object (functor)

• A lambda expression

18

• Launching a thread using function object and taking function parameters

• Example: launching thread with function object

• Create a callable object using the

constructor

• The thread calls the function call

operator on the object

class fn_object_class {
 // Overload () operator
 void operator()(params) {
 // Do Something
 }
}
std::thread thread_object(fn_object_class(), params)

#include <thread>
#include <iostream>

class Hello{
public:
 void operator()(std::string name)
 {
 std::cout << "Hello to " << name << std::endl;
 }
};

int main(){
 std::thread t(Hello(), "alicia");
 t.join();
}

Multithreading --- Launching thread with function object

19

Multithreading --- managing thread

• A callable types:

• A function pointer

• A function object

• A lambda expression

20

• Launching a thread using lambda function

• Example:

std::thread thread_object([](params) {
// Do Something

}, params);

#include <iostream>

#include <string>

#include <thread>

int main()

{

 std::thread t([](std::string name){

 std::cout << "Hello World ! " << name <<" \n";

 }, “Alicia”);

 t.join();

}

Multithreading --- Launching thread with lambda function

21

• Lambda expression

[capture clause] (parameters) -> return-type
{
 definition of method
}

Lambda function

22

• Capture variables:

• [&] : capture all external variables by reference

• [=] : capture all external variables by value

• [a, &b] : capture a by value and b by reference

[capture clause] (parameters) -> return-type
{
 definition of method
}

Lambda function

std::vector<int> v1 = {3, 1, 7, 9};
std::vector<int> v2 = {10, 2, 7, 16, 9};
// access v1 and v2 by reference
auto pushinto = [&] (int m){

v1.push_back(m);
v2.push_back(m);

};
 pushinto(100);
 …

& can access all
the variables that
are in scope.

23

Multithreading

• What is concurrency

• Threads launching

• Thread finishing

• join()

• detach()

• Threads safety 24

Thread lifecycle and program termination

25

timeline

Program starts:
$./exec

Program ends:
return _;
or exit(_);

Main thread
starts execution
when the
program starts

std::thread t1(…);
launch and start

execution immediately
upon construction

Thread t1

Thread terminates
(if function finishes
before the program

ends)

What if thread
function takes

longer than the
main function?

Thread lifecycle and program termination

26

timeline

Program starts:
$./exec

Program ends:
return _;
or exit(_);

std::thread t1(…);
launch and start

execution immediately
upon construction

Thread t1

Thread terminates
std::terminate() gets called

Main thread
starts execution
when the
program starts

undefined behavior,
may lead to resource leaks or
abrupt program termination

Program termination
ends all threads

demo

https://en.cppreference.com/w/cpp/error/terminate

https://en.cppreference.com/w/cpp/error/terminate

Multithreading

• Launching a thread:

• Function pointer

• Function object

• Lambda function

• Managing threads

• Join()

• Detach() 27

Joining threads with std::thread

• Wait for a thread to complete

• Ensure that the thread was finished before the function was exited

• Clean up any storage associated with the thread

• join() can be called only once for a given thread

std::thread thread_obj(func, params);

Thread_obj.join();

28

demo

Thread lifecycle and program termination

29

timeline

Program starts:
$./exec

Program ends:
return _;
or exit(_);

std::thread t1(…);
launch and start

execution immediately
upon construction

Thread t1

Thread terminates

Main thread
starts execution
when the
program starts

Thread lifecycle and program termination

30

timeline

Program starts:
$./exec

Program ends:
return _;
or exit(_);

std::thread t1(…);
launch and start

execution immediately
upon construction

Thread t1

t1.join();

Main thread
starts execution
when the
program starts

Main thread waits for thread

t1 finishes, then return; to
ensure proper clean up

Detaching threads with std::thread

• Run thread independently, with no direct means of communicating with it.

Ownership and control are passed over to the C++ Runtime Library

• Detached threads terminate when the program ends

• For long-running tasks; they may run for the entire lifetime of applications,

such as background logging or monitoring tasks, async notification or alert

std::thread thread_obj(func, params);

thread_obj.detach();

31
demo

Multithreading

• What is concurrency

• Threads launching

• Threads safety

• Race condition

• Examples of data types that are/not thread-safe 32

Thread Safety

• A function, a piece of code, or an object is thread-safe when it can

be invoked or accessed concurrently by multiple threads without

causing unexpected behavior, race conditions, or data corruption.

33

What could go
wrong with

concurrent access?

Sharing data among threads ---race condition

• Race condition:

• The situation where the outcome depends on the relative

ordering of execution of operations on two or more threads;

the threads race to perform their respective operations.

Code source:
https://github.com/aliciayuting/CS4414Demo.git

34

https://github.com/aliciayuting/CS4414Demo.git

Sharing data among threads ---race condition

• Example: Concurrent increments of a shared integer variable.

• Each thread shares an integer called count initialized to 0,

increments it 1 million times concurrently without any

synchronization

Code source:
https://github.com/aliciayuting/CS4414Demo.git

35

https://github.com/aliciayuting/CS4414Demo.git

Sharing data among threads ---race condition

• Example: Concurrent increments of a shared integer variable.

• Increment in assembly

Code source:
https://github.com/aliciayuting/CS4414Demo.git

36

https://github.com/aliciayuting/CS4414Demo.git

Example: Concurrent increments of a shared integer variable

number = 1

1. Read the value

2. increment
number++;

void Increment(){
 number ++;
}

3. Write back the
value

37

Thread 0

num = 0

Oh! I see
num=0.

Thread 1. Write back 1.

Oh! I see
num=1.

Thread 2. Write back 2.

Oh! I see
num=2.

Thread 3. Write back 3.

Ideally what we want

num = 3

38

Example: Concurrent increments of a shared integer variable

Read the value
1

Write back the value
2

3

4

5

6

num = 0

Read the value
Oh! I see
num=0.

Thread 1. Write back 1.

Oh! I see
num=1.

Thread 2. Write back 2.

Oh! I see
num=2.

Thread 3. Write back 3.

Ideally what we want

num = 3

39

Example: Concurrent increments of a shared integer variable

Write back the value

Will it always be
in this

sequence?

num = 0

Read the value
Oh! I see
num=0.

Thread 1. Write back 1.

Oh! I see
num=0.

Thread 2. Write back 1.

Oh! I see
num=1.

Thread 3. Write back 2.

num = 2

40

Example: Concurrent increments of a shared integer variable

1

2

4

5

6

Write back the value
3

Concurrent reads, before

the previous thread write

back, caused the out-of-

order inconsistent results.

Race condition

a race condition is the situation where

• the outcome depends on the

relative ordering of execution of

operations on two or more threads;

• the threads race to perform their

respective operations.

41

Thread safe?

42

• Is integer inherently thread safe?

• No, as we showed just now

• Next recitation :

• What about other standard libraries classes and types thread-safety

• How can multi-thread programing share data while guaranteeing thread

safety?

std::map

std::map<int, int> global_map;

int main(){

 for (int i = 0; i < 1000000; ++i){

 global_map[i] = i;

 }

 std::thread r_thread(read_map);

 std::thread e_thread(erase_map);

 read_map_thread.join();

 erase_map_thread.join();

}

void read_map(){

 for (int i=0;i<1000000;++i){

 if(global_map.find(i) == global_map.end())

 continue;

 int val = global_map.at(i);

 if(val != i){

 std::cout << i << "," << val << std::endl;

 }

 }

}

void erase_map(){

 for (int i = 20000; i < 80000; ++i){

 global_map.erase(i);

 }

}

What could go wrong?

demo

43

Where to find the resources?

• Concurrency programing:

• Book: C++Concurrency in Action Practice Multithreading

• https://learn.microsoft.com/en-us/archive/blogs/ericlippert/what-is-this-thing-you-call-

thread-safe

• cppcon thread-safe: https://youtu.be/s5PCh_FaMfM?si=-3h7nszcy_jesQAH

• Notes:

• https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/

44

https://youtu.be/s5PCh_FaMfM?si=-3h7nszcy_jesQAH
https://thispointer.com/c11-multithreading-part-3-carefully-pass-arguments-to-threads/

	Slide 1: CS4414 Recitation 9 multi-threading I
	Slide 2: Multithreading
	Slide 3: Concurrency
	Slide 4: Types of concurrency
	Slide 5: Concurrency
	Slide 6: Multithreading
	Slide 7: Multithreading
	Slide 8: Launching thread (via std::thread)
	Slide 9: Launching thread (via std::thread)
	Slide 10: Launching thread --- function pointer
	Slide 11: Launching thread --- function pointer
	Slide 12: Launching thread --- function pointer
	Slide 13: Launching thread (via std::thread)
	Slide 14
	Slide 15
	Slide 16: Launching thread --- member function pointer
	Slide 17: Launching thread --- member function pointer
	Slide 18: Multithreading --- managing thread
	Slide 19
	Slide 20: Multithreading --- managing thread
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Multithreading
	Slide 25: Thread lifecycle and program termination
	Slide 26: Thread lifecycle and program termination
	Slide 27: Multithreading
	Slide 28: Joining threads with std::thread
	Slide 29: Thread lifecycle and program termination
	Slide 30: Thread lifecycle and program termination
	Slide 31: Detaching threads with std::thread
	Slide 32: Multithreading
	Slide 33: Thread Safety
	Slide 34: Sharing data among threads ---race condition
	Slide 35: Sharing data among threads ---race condition
	Slide 36: Sharing data among threads ---race condition
	Slide 37: Example: Concurrent increments of a shared integer variable
	Slide 38: Example: Concurrent increments of a shared integer variable
	Slide 39: Example: Concurrent increments of a shared integer variable
	Slide 40: Example: Concurrent increments of a shared integer variable
	Slide 41: Race condition
	Slide 42: Thread safe?
	Slide 43: std::map
	Slide 44: Where to find the resources?

