
CS4414 Recitation 8
C++ Compilation & Performance(Gprof)

10/19/2024

Alicia Yang

2

How to write good system program in C++

1. clean and correct code

2. Develop efficient system

Write clean and correct code

3

• The basics: C++ types, variable …

• Classes and functions

• Memory management in C++, RAII principle

• Smart pointers in C++

• C++ templates

• Standard containers – std::vector<T>, std::map<K,V>

Develop efficient system

4

• Cmake for large system compilation management, gprof for

program profiling

• Make efficient use of hardware

• Hardware parallelism

• Multithreading and synchronization

Overview

5

•C++ compilation and linking

• Linking review

• Makefile and Cmake

• Performance optimization

• Performance measurement

• gprof

C++ Compilation

• Linking

• Statically linked library vs dynamically linked library

• Makefile & CMake

Code source:
https://github.com/aliciayuting/CS4414Demo.git

https://github.com/aliciayuting/CS4414Demo.git

Linking

Linking is a technique that allows programs to be constructed from
multiple object files.

• Compile time (when a program is compiled)

• Load time (when a program is loaded into memory)

• Run time (while a program is executing)

Cornell CS4414 - Fall 2024 (lecture 13)

• A linker takes a collection of object files and combines them into an
object file. But this object file will still depend on libraries.

• Next it cross-references this single object file against libraries, resolving
any references to methods or constants in those libraries.

• If everything needed has been found, it outputs an executable image.

Cornell CS4414 - Spring 2023 8

Your code

+ =
Std:xxx libraries

Libraries your
company created

Statically linked
object files

Executable

Compile time… … Runtime

Linking

• Gcc is really a “compiler driver”: It launches a series of sub-programs
• linux> gcc -Og -o prog main.c sum.c

• linux> ./prog

Linker (ld)

Translators
(cpp, cc1, as)

main.c

main.o

Translators
(cpp, cc1, as)

sum.c

sum.o

prog

Source files

Separately compiled
relocatable object files

Fully linked executable object file
(contains code and data for all functions
defined in main.c and sum.c)

Cornell CS4414 - Spring 2023 9

Linking

C++ libraries

• Why use library?
• The C++ libraries are modular components of reusable code. Using class

libraries, you can integrate blocks of code that have been previously built and
tested.

• What are in C++ library?
• A C++ library consists of header files and an object library.

• The header files provide class and other definitions that the library exposes
(offers) to the programs using its.

• The object library(precompiled binary) contains compiled implementation of
functions and data that are linked with your program to produce an executable
program.

Static-linked libraries

• contains code that is linked to users’ programs at compile time.

(.a(archive) in linux, or .lib in windows)

• Compiled and linked directly into the program

• a copy of the library becomes part of every executable that uses it,

this can cause a lot of wasted space. (Suppose building 100

executables, each one of them will contain the whole library code,

which increases the code size overall)

Dynamic(shared) library

• contains code designed to be shared by multiple programs. (.so in

linux, or .dll in wondows, .dylib in OS X files)

• Loaded into your application at run time

• many programs can share one copy, which saves space. (All the

functions are in a certain place in memory space, and every

program can access them, without having multiple copies of them)

Library Types in C++ --- compile time

Library Types in C++ --- run time

When to use static linking vs. dynamic linking

• Static linking disadvantages

• Duplication in the stored executables

• Duplication in the running executables

• Minor bug fixes in system libraries? Must rebuild everything!

Cornell CS4414 - Spring 2023

When to use static linking vs. dynamic linking

• Static linking advantages

• Executable is complete and self-contained. No runtime dependencies

• Predictable behavior

• Requires minimal operating system

• When to use

• Commonly used by embedded systems, like microcontroller, IoT devices, …

Cornell CS4414 - Spring 2023

When to use static linking vs. dynamic linking

• Dynamic linking advantages

• Runtime dependency: at execution, the dynamic linker does need to be

able to find the library file (a “.so” file) If a dynamically linked executable is

launched on a machine that lacks the DLL, you will get an error message

(usually, on startup, but there are some obscure cases where it happens

later, when the DLL is needed)

• Compatibility issues: version conflict

Cornell CS4414 - Spring 2023

When to use static linking vs. dynamic linking

• Dynamic linking advantages

• Reduced memory usage, smaller executable size: a single copy is shared

• Easier for update and maintenance

• Version flexibility. If the library updates, simply only need update the

library itself (if the APIs remain the same)

• When to use it

• Commonly used for open-sourced libraries (boost, opencv, grpc..)

Cornell CS4414 - Spring 2023

Linking

• Linking is the process of combining various object files (and

libraries) into a single executable or library.

• Linking happens either at compile time (static linking) or at

runtime (dynamic linking).

$ ldd my_exec

Loading

• Loading is the process of bringing an executable (and its

dependencies) into memory to run it.

• Loading happens at runtime

• For statically linked programs: the operating system directly loads the

entire binary into memory. No loading or dynamic linking involved.

• For dynamically linked programs: dynamic linker(part of OS) finds, loads,

and links shared libraries into memory.

Makefile & Cmake

• What is Makefile and CMake

• Simple CMake

• CMake with linked libraries

• CMake with flags
Code source:
https://github.com/aliciayuting/CS4414Demo.git

https://github.com/aliciayuting/CS4414Demo.git

Build Files & Generate Executables --- MakeFile

• Makefile is just a text file that is used or referenced by the ‘make’ command to build
the targets.

MakeFile

output
(executable)

CC = g++
CFLAGS = -g -Wall
TARGET = output
all: $(TARGET)
$(TARGET): main.o hello.o
 $(CC) $(CFLAGS) -o $(TARGET) main.o hello.o
main.o: main.cpp hello.hpp
 $(CC) $(CFLAGS) -c main.cpp

hello.o: hello.hpp hello.cpp
 $(CC) $(CFLAGS) -c hello.cpp

Hello.hpp

Hello.cpp

main.cpp

Run “make” in the shell

main.o

hello.o

CMake

• Why CMake?

• Makefiles are low-level, clunky creatures

• CMake is a higher-level language to automatically generate Makefiles

• CMake contains more features, such as finding library, files, header files; it

makes the linking process easier, and gives readable errors

• What is CMake?

• CMake is an extensible, open-source system that manages the build process

in an operating system and in a compiler-independent manner.

CMake

CMakeLists.txt files in each source directory are used to generate
Makefiles

MakefileRun cmake in shell
CMakeLists.txt

CMake

Why CMake?

• Compilation tool that helps to generate build file in a standard way

• specify build order and dependencies

• prevent creating cyclic dependencies and common bugs

• Good at scaling to larger projects

Cmake with one simple file

• Helloworld demo example

• Build and Run
• Navigate to the source directory, and create a build directory

 $ cd ./myproject & $ mkdir build

• Navigate to the build directory, and run Cmake to configure the project and generate a
build system

 $ cd build &. $ cmake ..

• Call build system to compile/link the project

 either run. $ make

 or run. $ cmake –build .

cmake_minimum_required(VERSION 3.12) # set the
project name project(MyProject) # add the
executable add_executable(output main.cpp)

cmakelists.txt

demo

Cmake with libraries

• Demo: main.cpp with hello library

• add_executable:
• create an executable target from

source files

• generate the final program that
can be run on the system

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

add_library{
 say-hello [library type](optional)
 hello.hpp
 hello.cpp
}

target_include_directories(say-hello
PUBLIC ${CMAKE_SOURCE_DIR})

add_executable(output main.cpp)

target_link_libraries(output PRIVATE say-
hello)

cmakelists.txt

Cmake with libraries

• Demo: main.cpp with hello library

• Declare a new library

• Library name : say-hello

• Source files: hello.hpp, hello.cpp

• Can add library type: STATIC
(default), SHARED

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

add_library{

 say-hello [library type](optional)
 hello.hpp
 hello.cpp
}

target_include_directories(say-hello
PUBLIC ${CMAKE_SOURCE_DIR})

add_executable(output main.cpp)

target_link_libraries(output PRIVATE say-
hello)

cmakelists.txt

C++ libraries

• What are in C++ library?
• A C++ library consists of header files and an object library.

• The header files provide class and other definitions that the library exposes
(offers) to the programs using its.

• The object library(precompiled binary) contains compiled implementation of
functions and data that are linked with your program to produce an executable
program.

Cmake with libraries

• Demo: main.cpp with hello library

• Tell cmake to link the library to the
executable(output)

• Private link

• Public link

• interface

demo

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

add_library{
 say-hello [library type](optional)
 hello.hpp
 hello.cpp
}

target_include_directories(say-hello
PUBLIC ${CMAKE_SOURCE_DIR})

add_executable(output main.cpp)

target_link_libraries(output PRIVATE say-
hello)

cmakelists.txt

Cmake Target_link_libraries

• target_link_libraries(<target>

 <PRIVATE|PUBLIC|INTERFACE> <lib> ...])

• The PUBLIC, PRIVATE and INTERFACE keywords can be used to specify
both the link dependencies and the link interface in one command.

• PUBLIC: Libraries and targets following PUBLIC are linked to, and are made
part of the link interface.

• PRIVATE: Libraries and targets following PRIVATE are linked to, but are not
made part of the link interface.

• INTERFACE: Libraries following INTERFACE are appended to the link interface
and are not used for linking <target>

Cmake Target_include_libraries

• Specifies include directories to use when compiling a given target.

• Tells the compiler where to look for header files (e.g., .h, .hpp files)

that define functions, classes, or other declarations.

target_include_directories(<target> [SYSTEM] [AFTER|BEFORE]

 <INTERFACE|PUBLIC|PRIVATE> [items1...]

 [<INTERFACE|PUBLIC|PRIVATE> [items2...] ...])

Example of PRIVATE PUBLIC INTERFACE link libraries

add_library(my_lib STATIC my_lib.cpp)

target_include_directories(my_lib
 PRIVATE ${CMAKE_SOURCE_DIR}/include/private
 PUBLIC ${CMAKE_SOURCE_DIR}/include/public
 INTERFACE ${CMAKE_SOURCE_DIR}/include/interface)

target_link_libraries(my_lib PRIVATE private_lib PUBLIC public_lib INTERFACE
interface_lib)

add_executable(my_app main.cpp)
target_link_libraries(my_app my_lib)

Setting include directories for my_lib

Link libraries for my_lib

Add the executable

Link my_app to my_lib

Only my_lib will use this

Cmake with Flags

• C++ standard (equivalent to -std=c++20)

 CMAKE_CXX_STANDARD

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

set(CMAKE_CXX_STANDARD 20)

set(CMAKE_BUILD_TYPE Release)
if(CMAKE_BUILD_TYPE STREQUAL "Release")
 set(CMAKE_CXX_FLAGS_RELEASE
"${CMAKE_CXX_FLAGS_RELEASE} –O3")
 set(CMAKE_C_FLAGS_RELEASE
"${CMAKE_C_FLAGS_RELEASE} –O3")
endif()

add_executable(output main.cpp)

cmakelists.txt

Cmake with Flags

• Build Type

 set(CMAKE_BUILD_TYPE Release)

 set(CMAKE_BUILD_TYPE Debug) // gdb

• Optimization level

 set(CMAKE_CXX_FLAGS_RELEASE

"${CMAKE_CXX_FLAGS_RELEASE} -O1")

 set(CMAKE_CXX_FLAGS_RELEASE
"${CMAKE_CXX_FLAGS_RELEASE} -O3")

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

set(CMAKE_CXX_STANDARD 20)

set(CMAKE_BUILD_TYPE Release)
if(CMAKE_BUILD_TYPE STREQUAL "Release")
 set(CMAKE_CXX_FLAGS_RELEASE
"${CMAKE_CXX_FLAGS_RELEASE} –O3")
 set(CMAKE_C_FLAGS_RELEASE
"${CMAKE_C_FLAGS_RELEASE} –O3")
endif()

add_executable(output main.cpp)

cmakelists.txt
demo

Cmake commands

• Scope of execution

 Additional files can be run
(added to the scope) using the
add_subdirectory() command

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

set(CMAKE_CXX_STANDARD 20)

set(CMAKE_BUILD_TYPE Release)

add_subdirectory(src/rectangle)
add_subdirectory(src/test)

add_executable(output main.cpp)

cmakelists.txt
demo

Performance Optimization

• 5 steps to improve runtime efficiency

• Time study

• How to use gprof

• Demo

Improve Execution Time Efficiency

1. Performance measurement (timing breakdown analysis)

2. Identify hot spots

3. Use a better algorithm or data structure

4. Enable compiler speed optimization

5. Tune the code

Time the program --- Unix ‘time’ command

• Run $ time ./output

 real 0m12.977s

 user 0m12.860s

 sys 0m0.010s

• Real: Wall-clock time between program invocation and termination

• User: CPU time spent executing the program

• System: CPU time spent within the OS on the program’s behalf

Identify hot spots

• Gather statistics about your program’s execution

• Runtime profiler: gprof (GNU Performance Profiler)

• How does gprof work?

• By randomly sampling the code as it runs, gprof check what line

is running, and what function it’s in

Gprof

• Compile the code with flag –pg

• g++ -pg helloworld.cpp -o output

• Run the program

• $./output

• Running the application produce a profiling result called gmon.out

• Create the report file

• gprof output > myreport

• Read the report

• vim myreport

Gprof by CMake

• Compile the code with flag –pg set in CMakeLists

• Run the program

• $./output

• Create the report file

• gprof output > myreport

• Read the report

• vim myreport

cmake_minimum_required(VERSION 3.12)
project(MyProject VERSION 1.0.0)

Enable gprof profiling
set(CMAKE_CXX_FLAGS
"${CMAKE_CXX_FLAGS} -pg")
set(CMAKE_EXE_LINKER_FLAGS
"${CMAKE_EXE_LINKER_FLAGS} -pg")

add_executable(output main.cpp)

cmakelists.txt

Flat Profile

• name: name of the function

• %time: percentage of time spent executing this function

• cumulative seconds: This is the cumulative total number of seconds the computer spent executing this

functions, plus the time spent in all the functions above this one in this table.

• self seconds: time spent executing this function

• calls: number of times function was called (excluding recursive)

• self s/call: average time per execution (excluding descendents)

• total s/call: average time per execution (including descendents)

Each sample counts as 0.01 seconds.
 % cumulative self self total
time seconds seconds calls us/call us/call name
13.22 0.28 0.28 50045000 0.01 0.01 void std::__cxx11::basic_string<char, std::char_traits<char>, …

 10.39 0.50 0.22 100000000 0.00 0.00 std::vector<Entity, std::allocator<Entity> >::operator[](unsigned long)
6.85 0.65 0.15 50005000 0.00 0.00 __gnu_cxx::__normal_iterator<Entity const*,std::vector<Entity,…

 5.67 0.77 0.12 100030000 0.00 0.00 __gnu_cxx::__normal_iterator<Entity const*, std::vector<Entity, …
 5.67 0.89 0.12 50045000 0.00 0.01 std::iterator_traits<char*>::difference_type std::distance<char*>(char*,…
 5.43 1.00 0.12 50005000 0.00 0.00 __gnu_cxx::__normal_iterator<Entity const*,std::vector<Entity, …
…
…

Improve Execution Time Efficiency

1. Performance measurement (timing breakdown analysis)

2. Identify hot spots

3. Use a better algorithm or data structure

4. Enable compiler speed optimization. (Compile with -O3)

5. Tune the code

demo

Reasoning about system performance

• Which algorithm? A system can be very complex with many features

• A = processing files, B = printing 1 million lines of output

46

BA

Fairly optimized code

Sequential program with 2 steps

Highly inefficient code

Reasoning about system performance

• Which algorithm? A system can be very complex with many features

• What if step A takes about 99% of the total time? We need to profile and

understand performance characteristics of code we write
47

BA

Fairly optimized code

Sequential program with 2 steps

Highly inefficient code

Where to find the resources?

• Linking and Compilation

• https://www.cs.cornell.edu/courses/cs4414/2024fa/Schedule.htm Lecture 13

• CPPCON linker and loaders: https://www.youtube.com/watch?v=_enXuIxuNV4

• Makefile & Cmake

• https://cmake.org/cmake/help/book/mastering-

cmake/chapter/Converting%20Existing%20Systems%20To%20CMake.html

• Gprof

• GNU gprof manual: https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html

https://www.cs.cornell.edu/courses/cs4414/2024fa/Schedule.htm
https://www.youtube.com/watch?v=_enXuIxuNV4
https://cmake.org/cmake/help/book/mastering-cmake/chapter/Converting%20Existing%20Systems%20To%20CMake.html
https://cmake.org/cmake/help/book/mastering-cmake/chapter/Converting%20Existing%20Systems%20To%20CMake.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html

	Slide 1: CS4414 Recitation 8 C++ Compilation & Performance(Gprof)
	Slide 2
	Slide 3: Write clean and correct code
	Slide 4: Develop efficient system
	Slide 5: Overview
	Slide 6: C++ Compilation
	Slide 7: Linking
	Slide 8: Linking
	Slide 9: Linking
	Slide 10: C++ libraries
	Slide 11: Static-linked libraries
	Slide 12: Dynamic(shared) library
	Slide 13: Library Types in C++ --- compile time
	Slide 14: Library Types in C++ --- run time
	Slide 15: When to use static linking vs. dynamic linking
	Slide 16: When to use static linking vs. dynamic linking
	Slide 17: When to use static linking vs. dynamic linking
	Slide 18: When to use static linking vs. dynamic linking
	Slide 19: Linking
	Slide 20: Loading
	Slide 21: Makefile & Cmake
	Slide 22: Build Files & Generate Executables --- MakeFile
	Slide 23: CMake
	Slide 24: CMake
	Slide 25: CMake
	Slide 26: Why CMake?
	Slide 27: Cmake with one simple file
	Slide 28: Cmake with libraries
	Slide 29: Cmake with libraries
	Slide 30: C++ libraries
	Slide 31: Cmake with libraries
	Slide 32: Cmake Target_link_libraries
	Slide 33: Cmake Target_include_libraries
	Slide 34: Example of PRIVATE PUBLIC INTERFACE link libraries
	Slide 35: Cmake with Flags
	Slide 36: Cmake with Flags
	Slide 37: Cmake commands
	Slide 38: Performance Optimization
	Slide 39: Improve Execution Time Efficiency
	Slide 40: Time the program --- Unix ‘time’ command
	Slide 41: Identify hot spots
	Slide 42: Gprof
	Slide 43: Gprof by CMake
	Slide 44: Flat Profile
	Slide 45: Improve Execution Time Efficiency
	Slide 46: Reasoning about system performance
	Slide 47: Reasoning about system performance
	Slide 48: Where to find the resources?

