
CS4414 Recitation 6
C++ templates

10/2024

Logistics

• HW 3 released on Canvas

• Due date:

• Part 1. 10/11 (Friday)

• Part 2. 10/27 (Sunday)

• START EARLY

• This assignment takes more time than hw1 and hw2. Make sure

to start early.

• Late submission

• -5 points per day, maximum -15 (3 days late submission)

2

What is C++?

3

A federation of related languages, with four primary sublanguages

• C: C++ is based on C, while offering approaches superior to C. Blocks,

statements, processor, built-in data types, arrays, pointers, etc., all come from

C

• Object-Oriented C++: “C with Classes”, classes including constructor,

destructors, inheritance, virtual functions, etc.

• Template C++: generic programming language. Gives a template, define

rules and pattern of computation, to be used across different classed.

• STL(standard template library): a special template library with conventions

regarding containers, iterators, algorithms, and function objects

Overview

•C++ class inheritance

•C++ template

4

C++ Inheritance

C++ Hierarchical Inheritance

6

class BaseClass

{

// data members

// member functions

}

class DerivedClass1 : visibility_mode BaseClass

{

// data members

// member functions

}

class DerivedClass2 : visibility_mode BaseClass

{

// data members

// member functions

}

Recap: Access Specifiers

3 access specifiers for class variables and methods in C++:

• public - accessible outside the class

• private (default) - inaccessible outside the class

• protected - only accessible to inherited classes outside the class

itself. More on Inheritance later…

7

Hierarchical Inheritance: Visibility Mode

Determines how base class features will be inherited by child

8

class DerivedClass1: public BaseClass

{// body}

class DerivedClass1: private BaseClass

{// body}

class DerivedClass1: protected BaseClass

{// body}

Access specifiers of base class

maintained as is (private remains

private, public remains pub…)

Public and protected access

specifiers from base become

private (i.e., inaccessible by derived

class objects)

Public and protected access specifiers

from base become private (i.e.,

inaccessible by derived class objects)

9

Base

Class

Derived

Class

Derived

Class

Derived

Class

Public Protected Private

Public Public Protected Private

Protected Protected Protected Private

Private
Not

inherited

Not

inherited

Not

inherited

Exercise: Fill in the blanks

Function Overloading

What happens if functions share the same name in the same scope?

• No problem! As long as…

• At compile time, the compiler can can choose which overload to

use based on types and number of arguments passed in by

caller

10

Function Overloading

11

Function declaration element Used for overloading?

Function return type No

Number of arguments Yes

Type of arguments Yes

Presence or absence of ellipsis Yes

Use of typedef names No

Unspecified array bounds No

const or volatile Yes (when applied to entire function)

Reference qualifiers (& and &&) Yes

https://learn.microsoft.com/en-us/cpp/cpp/function-overloading?view=msvc-170

What about function overloading with hierarchical inheritance?

12

Question: What will the program output?

A. foo(double): 5.1

foo(double): 5.4

B. foo(int): 5

foo(double): 5.4
C. Error

No overload resolution between

class hierarchy in C++

C++ Template

THE BASIC IDEA IS EXTREMELY SIMPLE (LECTURE SLIDE)

14

As a concept, a template could not be easier to understand.

Suppose we have an array of objects of type int:

int myArray[10];

With a template, the user supplies a type by coding something like Things<long>.

Internally, the class might say something like:

template<Typename T>
T myArray[10];

CORNELL CS4414 - Fall 2024

THE BASIC IDEA IS EXTREMELY SIMPLE (LECTURE SLIDE)

15

As a concept, a template could not be easier to understand.

Suppose we have an array of objects of type int:

int myArray[10];

With a template, the user supplies a type by coding something like Things<long>.

Internally, the class might say something like:

template<Typename T>
T myArray[10];

T behaves like a variable, but the “value”
is some type, like in or myClass

CORNELL CS4414 - Fall 2024

YOU CAN ALSO TEMPLATE A CLASS (LECTURE SLIDE)

16

template<typename T>

class Things {

 T myArray[10];

 T getElement(int);

 void setElement(int,T);

}

CORNELL CS4414 - Fall 2024

TEMPLATED FUNCTIONS (LECTURE SLIDE)

17

Template<typename T>

T max(T a, T b)

{

 return a>b? a : b; // T must support a > b

}

Templates can also be associated with individual functions. The entire class can have a

type parameter, but a function can have its own (perhaps additional) type parameters

CORNELL CS4414 - Fall 2024

This really should require that T be a type
supporting “comparable”.

Motivation

18

• Your boss wants you to build a digital calculator

• You come up with something like this

int subtract(int a, int b){

 return a-b;

}

int main(){

 int x = 10;

 int y = 7

 int x = subtract(x,y);

 std::cout << z << std::endl;

}

Motivation

19

• But calculators should be able to

 subtract floats and doubles too!

 And much more...

• So you come up with this...

int subtract(int a, int b){

 return a - b;

}

double subtract (double a, double b){

 return a - b;

}

float subtract(float a, float b){

 return a - b;

}

int main(){

 ……

}

Solution: function templates

20

•What if you could just replace int with a generic data type

• How? Let’s code!

• Limitation in shown example: parameters in subtract() must share type

• Uh-oh!

• No worries actually – let’s code again!

Metaprogramming with templates

21

• Metaprogramming: Metaprogramming is when a program takes as input

another program. E.g., g++ takes your C++ program and transforms it into

machine code

• With templates, we write a template for the actual source code

Templates enable generic programming

22

• A vector of objects, no

matter what type, need

similar memory

management, indexing etc.

std::vector<T> can store T=

A finite sequence of integers int

A point in the n-dimensional space double

A collection of Rectangles Rectangle

Fields in a line of a csv file std::string

A real matrix std::vector<double>

Templates in the perspective of programming

23

• One larger goal of programming is to automate tasks. Reflexively, we want to

avoid code copying in programming itself

• Functions are blocks of organized, reusable code that model a particular action

• Classes model similar set of objects

• Libraries provide a consistent set of features

• With templates, we can write functions or classes or variables that can work

with different types. Templates abstract away the type.

Quick aside: template hpp files don’t come with
associated cpp files

24

• C++ often generates implementation file code internally for each type parameter

from the template code in hpp file

• Remember: the compiler generates for each different type parameter that got

used

How do we use templates when our function has an

arbitrary number of parameters?

29

• Common issue…

• Solution: Variadic templates

• Let’s code

Variadic templates

30

class car {

public:

 int price;

 car(int price) : price(price) {}

};

class pc {

public:

 int price;

 pc(int price) : price(price) {}

};

class pen {

public:

 int price;

 pen(int price) : price(price) {}

};

Variadic templates

31

int sum() {

 return 0;

}

template <typename T, typename... Args>

int sum (T item, Args... rest) {

 return item.price + sum(rest...);

}

int main() {

 car c(100);

 pc pc(10);

 pen p(1);

 std::cout << "The sum is " << sum(c, pc, p);

}

Summary

• Templates let us move away from hardcoding types earlier on in our code so that our code can

be more generic

• Templates allow us to specialize the treatment of select types while applying the default

operations on all others

•C++ templates are compile-time constructs and thus must be implemented in a manner

supporting such constraints

•Variadic templates let us leverage template benefits despite arbitrary number of parameters in

function

Where to find the resources?

•Recitation references:

•https://www.cs.cornell.edu/courses/cs4414/2021fa/Recitation_slides/CS4414%20Reci

tation%2010.pdf

•https://www.cs.cornell.edu/courses/cs4414/2023sp/Recitation_slides/CS4414

Recitation7Sp2023.pdf

•Effective C++: 55 specific ways to improve your programs and designs, Scott

Meyers, 3rd edition

•A Tour of C++, Bjarne Stroustrup

https://www.cs.cornell.edu/courses/cs4414/2021fa/Recitation_slides/CS4414%20Recitation%2010.pdf
https://www.cs.cornell.edu/courses/cs4414/2021fa/Recitation_slides/CS4414%20Recitation%2010.pdf
https://www.cs.cornell.edu/courses/cs4414/2023sp/Recitation_slides/CS4414Recitation7Sp2023.pdf
https://www.cs.cornell.edu/courses/cs4414/2023sp/Recitation_slides/CS4414Recitation7Sp2023.pdf

	Slide 1: CS4414 Recitation 6 C++ templates
	Slide 2: Logistics
	Slide 3: What is C++?
	Slide 4: Overview
	Slide 5: C++ Inheritance
	Slide 6: C++ Hierarchical Inheritance
	Slide 7: Recap: Access Specifiers
	Slide 8: Hierarchical Inheritance: Visibility Mode
	Slide 9
	Slide 10: Function Overloading
	Slide 11: Function Overloading
	Slide 12: What about function overloading with hierarchical inheritance?
	Slide 13: C++ Template
	Slide 14: THE BASIC IDEA IS EXTREMELY SIMPLE (LECTURE SLIDE)
	Slide 15: THE BASIC IDEA IS EXTREMELY SIMPLE (LECTURE SLIDE)
	Slide 16: YOU CAN ALSO TEMPLATE A CLASS (LECTURE SLIDE)
	Slide 17: TEMPLATED FUNCTIONS (LECTURE SLIDE)
	Slide 18: Motivation
	Slide 19: Motivation
	Slide 20: Solution: function templates
	Slide 21: Metaprogramming with templates
	Slide 22: Templates enable generic programming
	Slide 23: Templates in the perspective of programming
	Slide 24: Quick aside: template hpp files don’t come with associated cpp files
	Slide 29: How do we use templates when our function has an arbitrary number of parameters?
	Slide 30: Variadic templates
	Slide 31: Variadic templates
	Slide 32: Summary
	Slide 33: Where to find the resources?

