
CS4414 Recitation 5
Continue with containers and classes

09/2024

Alicia Yang

What is C++?

2

A federation of related languages, with four primary sublanguages

• C: C++ is based on C, while offering approaches superior to C. Blocks,

statements, processor, built-in data types, arrays, pointers, etc., all come

from C

• Object-Oriented C++: “C with Classes”, classes including constructor,

destructors, inheritance, virtual functions, etc.

• Template C++: generic programming language. Gives a template, define

rules and pattern of computation, to be used across different classed.

• STL(standard template library): a special template library with conventions

regarding containers, iterators, algorithms, and function objects

Overview

3

• C++ classes

• Copy constructor, move construction

• Operator overload

• C++ objects and containers

Recap: C++ Classes

4

• Once a class is defined, you can define instances(called objects)

• Unlike JAVA, class objects are NOT null references in C++

• This means that when you create an object, all of its internal must

be initialized. When the object goes out of scope, it is destroyed

(deconstructed).

• Each class has at least one constructor and one destructor

More on Constructor Destructor

Recap: Constructors

6

• Constructor are used to initialize object of the class type

• A constructor has the same name as the class and no return

type. It can have as many argument as needed

• e.g.,

• myClass();

• myClass(int x, std::string str);

• …

// default constructor

// Parameterized constructor

Constructor: construct and initialize objects of that class

Rectangle::Rectangle():

 width(0),

 length(0),

 area(0)

{

}

• Default constructor: a constructor can be called with no argument

// Constructor body (can be empty or contain additional logic)

Initializer list

Recap: Destructor

8

• Destructor is called when the lifetime of an object ends

• It is used to free the resources that the object acquired during its

lifetime

• e.g.,

• ~myClass();

Implicit constructor and destructor

• Implicit default constructor:

• If there is no user-declared constructor for a class type, the compiler

implicitly provides a (public) default constructor.

• If there is user-declared constructor, the compiler will NOT implicitly

create the default constructor

• Implicit default destructor

• The implicitly-defined destructor defined by the compiler has an empty

body

Implicit constructor and destructor

10

Do I ever need to
define my own

destructor?

Yes, if the object has
pointers to a runtime
allocation of resources

MyIntVector example

class MyIntVector {

private:

 int* data; // Pointer to dynamically allocated array

 size_t size; // Number of elements in the vector

public:

 MyIntVector(size_t s) : size(s), data(new int[s]) {

 for (size_t i = 0; i < size; ++i) {

 data[i] = 0;

 }

 } ……

};

Demo

Copying in C++

12

• Copying data, copying memory from one place to another

• Copying takes time

Copying in C++

13

Rectangle obj1 = Rectangle(10.0, 11.0);

Rectangle obj2 = obj1;

int a = 5;

int b = a;

// creating a copy of int a

// obj2 is a copy of object obj1

Copying in C++

14

Rectangle obj1 = Rectangle(10.0, 11.0);

Rectangle obj2 = obj1;

obj2.width = 100.0;

Now, what’s the value
of obj1.wdith?

Copying in C++

15

Rectangle* obj1 = new Rectangle(10.0, 11.0);

Rectangle* obj2 = obj1;

Obj2->width = 100.0;

Now, what’s the value
of obj1.wdith?

Copy constructor

class Rectangle{

 Rectangle(const Rectangle& other);

}

17

// Construct an object of class Rectangle by copying
Rectangle object, other, passing by reference.

Copy constructor

18

• Create a new object by initializing it with an object of the same

class

• Called when

• Initialization

• Function argument passing by value

• Function return by value

Rectangle obj2 = obj1;

func(Rectangle obj);

return obj;

Demo

// for c++ 17+, there is RVO(return value optimization) that could avoid copy and use move instead

Implicitly-defined default copy-constructor

19

• If no user-defined copy constructor, the compiler declare and

define a copy constructor

• It performs member-wise copy of the object’s bases and

members to the new object it initializes

Do I ever need to
define my own

copy-constructor?

Yes, if an object has
pointers or any runtime
allocation of resources

Implicitly-defined default copy-constructor

20

• If no user-defined copy constructor, the compiler declare and

define a copy constructor

• It performs member-wise copy of the object’s bases and

members to the new object it initializes

• Default constructor does only shallow copy

myIntVector example

class myIntVector{

public:

 int* data;

 size_t size;

 size_t capacity;

 myIntVector();

 myIntVector(size_t s);

 ~myIntVector();

 ...

};

myIntVector::myIntVector(size_t s) {

 size = s;

 capacity = s;

 data = new int[capacity];

 for (size_t i = 0; i < size; ++i) {

 data[i] = 0;

 }

}

myIntVector::~myIntVector(){

 delete[] data;

}

Demo

21

Default copy-constructor

myIntVector vect1 = myIntVector(3);

myIntVector vect2 = vect1;

vect1.data = 5;

Vect1
data, size, capacity

Vect2
data, size, capacity

int 0

int 0

int 0

0x7cd10a1c

22

Stack

Heap

data

Code(Text)

Not ideal, because changing only
one changes both of them.

Want two identical independent
objects

shallow copy

Default copy-constructor

myIntVector func(){

 myIntVector vect1 = myIntVector(3);

 myIntVector vect2 = vect1;

}

myIntVector vect = func();

Stack
Vect1
data, size, capacity

Vect2
data, size, capacity

int 0

int 0

int 0

23

Stack

Heap

data

Code(Text)

Bad, because now
vect2.data points to

nothing

0x7cd10a1c

shallow copy

Fix: User-defined copy constructor

myIntVector(const myIntVector& other) :

 size(other.size), data(new int[other.size]) {

 for (size_t i = 0; i < size; ++i) {

 data[i] = other.data[i];

 }

 }
24

Deep copy the object’s
members

Move constructor

class myIntVector{

 myIntVector(myIntVector && other);

}

25

// Transfer the ownership of the resources from the
object, other, to the new object

Move constructor

26

• Transfer the ownership of resources from one object to another,

instead of making a copy

• Called when

• Initialization

• Function argument passing

• Function return with Return Value Optimization(RVO)

Rectangle obj2 = std::move(obj1);

func(std::move(obj));

Why use move constructor?

27

• Improve the performance of the program by avoiding the

overhead caused by unnecessary copying.

Demo

myIntVector(myIntVector&& other) : size(0), data(nullptr) {

 data = other.data;

 size = other.size;

 other.data = nullptr;

 other.size = 0;

}

// copy the pointer of the memory
address of other.data

// Transfer the ownership of other’s

resource to this new object

C++ Class keyword

this keyword

the address of the implicit object parameter (object on which

the implicit object member function is being called)

29

class T {
 int x;
 void foo() {
 x = 6; // same as this->x = 6;
 this->x = 5; // explicit use of this->
 }
 …
};

https://en.cppreference.com/w/cpp/language/this

https://en.cppreference.com/w/cpp/language/this

default & delete keyword

30

• Using the keywords default and delete, you can enable or

disable a constructor

• When to disable the copy constructor?

• When you want unique ownership of a resource and disallow it

duplicated. E.g std::unique_ptr

• myClass(const myClass& other) = delete;

• If you write a parameterized constructor, but still want to keep a

default constructor

• myClass() = default;

Static keyword

declarations of class members not bound to specific instances

31

Static data members of a class

32

• A data member that is shared by all objects of the class

• Static data members cannot be initialized in constructors

(because they don’t exist per class object)

Rectangle example

class Rectangle{

 float width;

 float length;

 static int count;

public:

 Rectangle();

 ...

};

int Rectangle::count = 0;

int main(){

 Rectangle::count ++ ;

 std::cout << " rectangle

count is: " << Rectangle::count

<< std::endl;

}

Demo

Question:
Which memory segment
does static member data,

count live in member after
initialized?

Static data members of a class

34

• Prefer static class member over global

• Better encapsulation

• Avoiding name collisions

• Improve maintainability

Static member functions of a class

35

• A member function independent of any instance of the class

• Scope

• Accessed using the class name through the scope resolution

operator

• Class member access

• Can access static (data/function) members

• Cannot access non-static (data/function) members

Demo

Class operator overloading

Operator overload

37

• Customizes the C++ operators for operands of user-defined types.

Operators that can be overloaded Examples

Binary Arithmetic +, -, *, /, %

Assignment =, +=,*=, /=,-=, %=

Bitwise & , | , << , >> , ~ , ^

Subscript []

Function call ()

Relational >, < , = =, <=, >=

… …

Operator overload

38

• Customizes the C++ operators for operands of user-defined types.

std::string str = "Hello, ";
str.operator+=("world");
// same as str += "world";
operator<<(operator<<(std::cout, str), '\n’);

// same as std::cout << str << '\n';

Operator overload

39

Example overloading < operator

bool Rectangle::operator<(const Rectangle& other) const {

 return this->area() < other.area();

}

// Overload the < operator to compare rectangles

based on their area

Putting it all together

40

What is happening under the hood for
C++ standard library?

Fun activity!

Demo

Combining what we learnt about classes with vector

41

std::vector

42

template<
 class T,
 class Allocator = std::allocator<T>
> class vector;

https://en.cppreference.com/w/cpp/container/vector

https://en.cppreference.com/w/cpp/container/vector

push_back

43

• Appends the given element value to the end of the container.
• The new element could be constructed via

https://en.cppreference.com/w/cpp/container/vector

std::vector<Rectangle> rec_vec;

Rectangle rec1;

rec_vec.push_back(rec1);

rec_vec.push_back(std::move(rec1));

// Copy constructor

// Move constructor

https://en.cppreference.com/w/cpp/container/vector

emplace_back

44

• Appends a new element to the end of the container
• Besides the capabilities of push_back, it allows construct the

new element in-place

https://en.cppreference.com/w/cpp/container/vector

std::vector<Rectangle> rec_vec;

rec_vec.emplace_back(10.0, 11.0);

Rectangle rec1;

rec_vec.emplace_back(rec1);

// parameterized constructor

// Copy constructor

https://en.cppreference.com/w/cpp/container/vector

Exercise: Find the error

45

class myClass {

public:

 myClass(int x) {}

private:

 int myInt;

};

std::vector<myClass> myObjects(4);

Exercise: Find the error

46

class myClass {

public:

 myClass(int x) {}

private:

 int myInt;

};

std::vector<myClass> myObjects(4);

std::vector needs a way to
create default-constructed
elements when resizing or
initializing the vector with a
specified size.

Compiler no longer provides
default constructor, because of
user-defined constructor

Exercise: Find the error

47

// constructed elements

Fix

std::vector<myClass> myObjects; // size 0

 myClass obj1(5);

 myClass obj2(7);

 myObjects.push_back(obj1);

 myObjects.push_back(obj2);
// push_back invokes the

copy constructor to copy

the object into the vector

Where to find the resources?

• Copy constructor: https://www.geeksforgeeks.org/copy-constructor-in-cpp/

• Move semantics: https://www.cprogramming.com/c++11/rvalue-references-

and-move-semantics-in-c++11.html

• Operator overload: https://www.geeksforgeeks.org/operator-overloading-cpp/

• Effective C++: 55 specific ways to improve your programs and designs, Scott

Meyers, 3rd edition

• A Tour of C++, Bjarne Stroustrup

https://www.geeksforgeeks.org/copy-constructor-in-cpp/
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.geeksforgeeks.org/operator-overloading-cpp/

	Slide 1: CS4414 Recitation 5 Continue with containers and classes
	Slide 2: What is C++?
	Slide 3: Overview
	Slide 4: Recap: C++ Classes
	Slide 5: More on Constructor Destructor
	Slide 6: Recap: Constructors
	Slide 7: Constructor: construct and initialize objects of that class
	Slide 8: Recap: Destructor
	Slide 9: Implicit constructor and destructor
	Slide 10: Implicit constructor and destructor
	Slide 11
	Slide 12: Copying in C++
	Slide 13: Copying in C++
	Slide 14: Copying in C++
	Slide 15: Copying in C++
	Slide 17: Copy constructor
	Slide 18: Copy constructor
	Slide 19: Implicitly-defined default copy-constructor
	Slide 20: Implicitly-defined default copy-constructor
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Move constructor
	Slide 26: Move constructor
	Slide 27: Why use move constructor?
	Slide 28: C++ Class keyword
	Slide 29: this keyword
	Slide 30: default & delete keyword
	Slide 31: Static keyword
	Slide 32: Static data members of a class
	Slide 33
	Slide 34: Static data members of a class
	Slide 35: Static member functions of a class
	Slide 36: Class operator overloading
	Slide 37: Operator overload
	Slide 38: Operator overload
	Slide 39: Operator overload
	Slide 40: Putting it all together
	Slide 41: Combining what we learnt about classes with vector
	Slide 42: std::vector
	Slide 43: push_back
	Slide 44: emplace_back
	Slide 45: Exercise: Find the error
	Slide 46: Exercise: Find the error
	Slide 47: Exercise: Find the error
	Slide 48: Where to find the resources?

