
CS4414 Recitation 3
C++ memory management

09/2024

Alicia Yang

Overview

2

• C++ memory

• Stack vs heap

• Scope, lifetime, ownership

• C++ pointers

Animation
(How it works?)

How to use it
correctly?

Code example

C++ Memory

• How does stack and heap memory work?
• How to use stack and heap memory in my program?

Stack memory

Memory

• Stack: used for memory needed to call

methods(such as local variables), or for inline

variables

• Heap: Dynamically memory used for

programmers to allocate. The memory will

often be used for longer period than stack

• Data: use for constants and initialized global

objects

• Code: segments that holds compiled instructions

Stack

Heap

data

Code(Text)

High address

low address

Stack Memory

• Stack Allocation (Temporary

memory allocation):

• Allocate on contiguous blocks of

memory, in a fixed size

• Allocation happens in function call

stack

Stack

Heap

data

Code(Text)

High address

low address

int computeA(int a){return a*a;}

int computeFinal(int a, int b){

 int c = computeA(a) + b;

 return c;

}

int main()

{

 int a = 1;

 int b = 2;

 int total = computeFinal(a, b);

 …

}

Stack Allocation (Temporary memory allocation)

Stack
Stack

Heap

data

Code(Text)

main()
a, b

computeFinal()
a, b, c

computeA()
a

High address

low address

Stack

Stack

Heap

data

Code(Text)

main()
a, b

computeFinal()
a, b, c

Stack Allocation (Temporary memory allocation)
High address

low address

int computeA(int a){return a*a;}

int computeFinal(int a, int b){

 int c = computeA(a) + b;

 return c;

}

int main()

{

 int a = 1;

 int b = 2;

 int total = computeFinal(a, b);

 …

}

Stack

Stack

Heap

data

Code(Text)

main()
a, b,total

Stack Allocation (Temporary memory allocation)

Stack free
memory via
stack pointer

High address

low address

int computeA(int a){return a*a;}

int computeFinal(int a, int b){

 int c = computeA(a) + b;

 return c;

}

int main()

{

 int a = 1;

 int b = 2;

 int total = computeFinal(a, b);

 …

}

Stack Memory

• Stack Allocation (Temporary memory
allocation):

• Allocate on contiguous blocks of memory, in
a fixed size

• Allocation happens in function call stack

• When a function called, its variables got
allocated on stack; when the function call is
over, the memory for the variables is
deallocated. (scope)

• The allocation and deallocation for stack
memory is automatically done.

• Fast to allocate memory on stack(1CPU
operation), faster than heap

Stack

Heap

data

Code(Text)

High address

low address

int* helper()

{

 int a = 3;

 int * p = &a;

 return p;

}

int main(){

 int* h_p = helper();

 …

}

Common mistake with stack memory

Stack

Stack

Heap

data

Code(Text)

Int* h_p __

Int a 1

Int* p
helper()

main()

• A common mistake: returning a pointer to a

stack variable in a helper function

High address

low address

• The stack memory of a function gets automatically

deallocated after the function returns

Common mistake with stack memory

Stack

Stack

Heap

data

Code(Text)

Int* h_p __

Int a 1

Int* p

main()

Undefined behavior

High address

low address

int* helper()

{

 int a = 3;

 int * p = &a;

 return p;

}

int main(){

 int* h_p = helper();

 …

}

• The stack memory of a function gets automatically

deallocated after the function returns

Common mistake with stack memory

Stack

Stack

Heap

data

Code(Text)

Int* h_p __

Int a 1

Int* p

main()

High address

low address

int* helper()

{

 int a = 3;

 int * p = &a;

 return p;

}

int main(){

 int* h_p = helper();

 …

}

Can I have object with
lifetime exceeding the
scope it was created?

Heap memory

new
delete

Memory

• Stack: used for memory needed to call

methods(such as local variables), or for inline

variables

• Heap: Dynamically memory used for

programmers to allocate. The memory will

often be used for longer period than stack

• Data: use for constants and initialized global

objects

• Code: segments that holds compiled instructions

Stack

Heap

data

Code(Text)

High address

low address

Stack

Heap

data

Code(Text)

• new expression: create and initialize objects

on heap (dynamic storage duration)

Heap Memory
High address

low address

int* p = new int(7);

T* obj_p = new T(arg0, arg1, arg2,…);

double* arr_p = new double[]{1, 2, 3};

new expression

Heap Memory

Stack

Heap

data

Code(Text)

High address

low address

int* helper()

{

 int a = 3;

 int * p = new int(32);

 return p;

}

int main(){

 int* h_p = helper();

 …

}

int* h_p _

int a 3

int* p

new expression

Heap Memory

Stack

Heap

data

Code(Text)

High address

low address

int* helper()

{

 int a = 3;

 int * p = new int(32);

 return p;

}

int main(){

 int* h_p = helper();

 …

}

int* h_p _

int a 3

int* p

int 32

new expression

Heap Memory

Stack

Heap

data

Code(Text)

High address

low address

int* helper()

{

 int a = 3;

 int * p = new int(32);

 return p;

}

int main(){

 int* h_p = helper();

 …

}

int* h_p _

int a 3

int* p

int 32

new expression

Heap Memory

Stack

Heap

data

Code(Text)

High address

low address

int* helper()

{

 int a = 3;

 int * p = new int(32);

 return p;

}

int main(){

 int* h_p = helper();

 …

}

int* h_p _

int a 3

int* p

int 32

NO automatic

de-allocation

with scope.

How can I release the
resources when they

are no longer needed?

new expression

Stack

Heap

data

Code(Text)

• delete expression: destroys object previously
allocated by the new-expression and releases
obtained memory area back to OS.

Heap Memory
High address

low address

int* p = new int(7);

delete p;

T* p = new T(arg0, arg1, arg2,…);

delete obj_p;

double* arr_p = new double[]{1, 2, 3};

delete[] arr_p;

delete expression

int 32

Heap Memory

Stack

Heap

data

Code(Text)

High address

low address

int* helper()

{

 int a = 3;

 int * p = new int(32);

 return p;

}

int main(){

 int* h_p = helper();

 delete h_p;

 …..

}

int* h_p _

int a 3

int* p

// release the memory

delete expression

Stack

Heap

data

Code(Text)

• Using deleted pointers causes undefined behavior.

Heap Memory
High address

low address

delete expression

Heap Memory

Stack

Heap

data

Code(Text)

High address

low address

int* helper()

{

 int a = 3;

 int * p = new int(32);

 return p;

}

int main(){

 int* h_p = helper();

 delete h_p;

 std::cout << *h_p << std::endl;

}

int* h_p _

int a 3

int* p

Undefine

behavior

delete expression

Stack

Heap

data

Code(Text)

• Using more than one delete on the same new-ed

pointer causes undefined behavior

Heap Memory
High address

low address

delete expression

Heap Memory

Stack

Heap

data

Code(Text)

High address

low address

int* helper()

{

 int a = 3;

 int * p = new int(32);

 return p;

}

int main(){

 int* h_p = helper();

 delete h_p;

 delete h_p;

}

int* h_p _

int a 3

int* p

Undefine

behavior

delete expression

Stack

Heap

data

Code(Text)

• A good practice to set the freed pointers to

nullptr immediately after delete

Heap Memory

ptr = nullptr;

High address

low address

int *ptr = new int(10);

delete ptr;

// set the value of the freed pointer

delete expression

Stack

Heap

data

Code(Text)

Heap Memory
High address

low address

int * arr_ptr = new int[10];

delete arr_ptr;

delete expression for array

Stack
int* arr_ptr

 ……
int arr[0]

int arr[9]

……

int arr[0]delete[] arr_ptr;

int arr[9]

Stack

Heap

data

Code(Text)

• Heap memory is allocated explicitly by new

expression.

• To release heap memory, program needs

explicitly call delete expression.

• Unlike stack, memory allocated on heap is

not necessarily contiguous

Heap Memory
High address

low address

C++ Memory

• How does stack and heap memory work?
• How to use stack and heap memory in my program?

heap-based memory allocation

void foo(){

 int* arr = new int[10];

 arr[0] = 0;

}

Stack

Stack

Heap

data

Code(Text)

foo()

int* arrfoo()

 ……
int arr[0]

int arr[9]

……arr

int main(){

 foo();

 …….

}

main()

heap-based memory allocation

void foo(){

 int* arr = new int[10];

 arr[0] = 0;

}

Stack

Stack

Heap

data

Code(Text)

foo()

int* arrfoo()

 ……
int arr[0]

int arr[9]

int main(){

 foo();

 …….

}

main()

foo() function’s Stack
automatically gets popped

off when out of scope

……

heap-based memory allocation

void foo(){

 int* arr = new int[10];

 arr[0] = 0;

}

Stack

Stack

Heap

data

Code(Text)

foo()

int* arrfoo()

 ……
int arr[0]

int arr[9]

int main(){

 foo();

 …….

}

main()

foo() function’s Stack
automatically gets popped

off when out of scope

……
Does this function look correct?

No. It doesn’t release the
memory of arr when function

finishes.

heap-based memory allocation

int* foo(){

 int* arr = new int[10];

 arr[0] = 0;

 return arr;

}

Stack

Stack

Heap

data

Code(Text)

int* r_arr

int* arrfoo()

 ……
int arr[0]

int arr[9]

int main(){

 int* r_arr = foo();

 …….

}

main()

……

// r_arr is neither used
nor deleted in later
program

heap-based memory allocation

int* foo(){

 int* arr = new int[10];

 arr[0] = 0;

 return arr;

}

Stack

Stack

Heap

data

Code(Text)

int* r_arr

int* arrfoo()

 ……
int arr[0]

int arr[9]

demo

int main(){

 int* r_arr = foo();

 …….

}

main()

……

// r_arr is neither used
nor deleted in later
program

Is the program correct?

No. It never releases the
memory of arr, which causes

memory leak.

What is memory leak in C++?

• Memory leakage in C++ is when programmers allocates

heap-based memory by using new keyword and forgets to

deallocate the memory

Memory Leak

Stack

Heap

data

Code(Text)

Leaked memory

int* foo(){

 int* arr = new int[10];

 arr[0] = 0;

 return arr;

}

int main(){

 int* r_arr = foo();

 …….

}

Memory Leak

Stack

Heap

data

Code(Text)

Leaked memory
Leaked memory

Leaked memory

int* foo(){

 int* arr = new int[10];

 arr[0] = 0;

 return arr;

}

int main(){

 for(int i = 0; i < 100; i++){

 int* r_arr = foo();

 }…….

}

Leaked memory

Leaked memory
Leaked memory

Consequences of memory leak ?

• Reduces the amount of available memory, negatively impacts

the runtime performance

• If memory leaks accumulate over time and left unchecked, may

thrash or even crash a program

Memory Leak

• What is memory leak in C++?

• Consequences of memory leak?

• How to check if my program has memory leak?

• Valgrind: https://valgrind.org

$ valgrind --leak-check=full ./exec

demo

https://valgrind.org/

Memory Leak

• What is memory leak in C++?

• How to check if my program has memory leak?

• How to avoid memory leak in my program?

• Follow RAII principle(Resource acquisition is initialization)

• Use smart pointers instead of raw pointers

RAII Principle

• RAII principle(Resource acquisition is initialization):

• Resource acquisition must succeed for initialization to succeed.

• The resource is guaranteed to be held during its lifetime(between

when initialization finishes and finalization starts)

• The resources need to be released when not used.

Example.

obj
initialized

obj’s
Resource
acquired

obj finalized

obj’s
Resource
releaseobj in-

use

https://en.cppreference.com/w/cpp/language/lifetime

An object, obj’s lifetimeBegin:
• storage for its type is

obtained
• initialization is complete

end:
• the object is destroyed
• Obj’s storage is released

Program
runtime

https://en.cppreference.com/w/cpp/language/lifetime

C++ pointers

Types of Pointers

• C-style raw pointers

• Smart pointers

• unique_ptr

• shared_ptr

• For C++ ownership is the responsibility for cleanup.

• C-style raw pointer : does not represents ownership — can do

anything you want with it, and you can happily use it in ways which

lead to memory leaks or double-frees.

Ownership

C-style raw pointers

int* p = new int(7);

T* obj_p = new T(arg0, arg1, arg2,…);

double* arr_p = new double[]{1, 2, 3};

// a pointer to an object of class T on heap

Rectangle example from last recitation

#pragma once

class Rectangle{

 float width;

 float length;

 float area;

public:

 Rectangle();

 Rectangle(float w, float l);

 ~Rectangle();

 float& getArea();

... }; rectangle.hpp

#include "rectangle.hpp”

Rectangle::Rectangle(){

 … …

}

Rectangle::Rectangle(float w, float l){

 … …

}

Rectangle::~Rectangle(){

 … …

}

float& Rectangle::getArea(){

… } rectangle.cpp

Rectangle example

#include "rectangle.hpp”

int main(){

 Rectangle rec;

 Rectangle explicit_rec = Rectangle(10.0,12.0);

 Rectangle* rec;

 Rectangle* explicit_rec_ptr = new Rectangle(10.0, 12.0);

Stack

Heap

data

Code(Text)

// Declare a pointer with Rectangle
type, no Rectangle object created

Rectangle(0.0, 0.0)

Rectangle(10.0,12.0)

// Default constructor

// Parameterized constructor

// create a Rectangle object on heap

Rectangle(10.0, 12.0)

Types of Pointers

• C-style raw pointers

• Smart pointers: wrapper of a raw pointer and make sure the object

is deleted if it is no longer used

• unique_ptr

• shared_ptr

smart pointer: unique_ptr

• Owns and manages another object through a pointer and disposes

of that object when the unique_ptr goes out of scope

• Represents the sole owner of resource and will get destroyed and

cleaned up correctly

• Provides safety to classes and functions that handle objects with dynamic

lifetime, by guaranteeing deletion on both normal exit and exit through

exception
template <
 class T,
 class Deleter
> class unique_ptr<T[], Deleter>;

https://en.cppreference.com/w/cpp/memory/unique_ptr

https://en.cppreference.com/w/cpp/memory/unique_ptr

void foo(){

 std::unique_ptr<int[]> arr = std::make_unique<int[]>(10);

 arr[0] = 0;

}

Stack Stack

Heap

data

Code(Text)

foo()

std::unique_ptr<int[]>
 arr

foo()

 ……
int arr[0]

int arr[9]

int main(){

 foo();

 …….

}

main()

……

void foo(){

 std::unique_ptr<int[]> arr = std::make_unique<int[]>(10);

 arr[0] = 0;

}

Stack Stack

Heap

data

Code(Text)

foo()

std::unique_ptr<int[]>
 arr

foo()

 ……
int arr[0]

int arr[9]

int main(){

 foo();

 …….

}

main()

……

std::unique_ptr is
disposed:

delete[] arr;
is called

…

void foo(){

 std::unique_ptr<int[]> arr = std::make_unique<int[]>(10);

 arr[0] = 0;

}

Stack Stack

Heap

data

Code(Text)

foo()

std::unique_ptr<int[]>
arr

foo()

 ……
int arr[0]

int arr[9]

int main(){

 foo();

 …….

}

main()

………

smart pointer: unique_ptr

 std::unique_ptr<Rectangle> rec = new Rectangle(10.0,12.0);

 std::unique_ptr< Rectangle > default_rec(new Rectangle());

 std::unique_ptr< Rectangle > explicit_rec = std::make_unique< Rectangle>();

 std::unique_ptr< Rectangle > rec2 = explicit_rec ;

std::unique_ptr< Rectangle > rec2 = std::move(explicit_rec);

Unique_ptr needs to call the constructor explicitly

unique_ptr class doesn’t allow copy of unique_ptr

std::move() : transferring of ownership(resources) from one object to another

• a group of owners who are collectively responsible for the resource.

The last of them to get destroyed will clean it up.

smart pointer: shared_ptr

• std::shared_ptr: a smart pointer that retains shared ownership of an object

through a pointer. Several shared_ptr objects may own the same object.

• The object is destroyed and its memory deallocated, when the last shared_ptr

owning the object is destroyed or is assigned to another pointer. (when Reference

counting==0)

 std::shared_ptr<Rectangle> rec = std::make_shared<Rectangle>();

 std::shared_ptr< Rectangle> rec2(new Rectangle());

 std::shared_ptr< Rectangle> rec3 = rec2;

smart pointer: shared_ptr
demo

Where to find the resources?

• Memory Heap and Stack:

https://courses.engr.illinois.edu/cs225/fa2022/resources/stack-heap/

• RAII: https://learn.microsoft.com/en-us/cpp/cpp/object-lifetime-and-resource-

management-modern-cpp?view=msvc-170

• Move semantics: https://www.cprogramming.com/c++11/rvalue-references-

and-move-semantics-in-c++11.html

• Passing arguments by reference: https://www.learncpp.com/cpp-

tutorial/passing-arguments-by-reference/

• Effective C++: 55 specific ways to improve your programs and designs, Scott

Meyers, 3rd edition

• A Tour of C++, Bjarne Stroustrup

https://courses.engr.illinois.edu/cs225/fa2022/resources/stack-heap/
https://learn.microsoft.com/en-us/cpp/cpp/object-lifetime-and-resource-management-modern-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/object-lifetime-and-resource-management-modern-cpp?view=msvc-170
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.learncpp.com/cpp-tutorial/passing-arguments-by-reference/
https://www.learncpp.com/cpp-tutorial/passing-arguments-by-reference/

	Slide 1: CS4414 Recitation 3 C++ memory management
	Slide 2: Overview
	Slide 3: C++ Memory
	Slide 4: Stack memory
	Slide 5: Memory
	Slide 6: Stack Memory
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Stack Memory
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Heap memory
	Slide 16: Memory
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32: C++ Memory
	Slide 33: heap-based memory allocation
	Slide 34: heap-based memory allocation
	Slide 35: heap-based memory allocation
	Slide 36: heap-based memory allocation
	Slide 37: heap-based memory allocation
	Slide 38: What is memory leak in C++?
	Slide 39: Memory Leak
	Slide 40: Memory Leak
	Slide 41: Consequences of memory leak ?
	Slide 42: Memory Leak
	Slide 43: Memory Leak
	Slide 44: RAII Principle
	Slide 45: Example.
	Slide 46: C++ pointers
	Slide 47: Types of Pointers
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Types of Pointers
	Slide 53: smart pointer: unique_ptr
	Slide 54
	Slide 55
	Slide 56
	Slide 57: smart pointer: unique_ptr
	Slide 58
	Slide 59
	Slide 68: Where to find the resources?

