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Overview

2

• C++ memory

• Stack vs heap

• Scope, lifetime, ownership

• C++ pointers

Animation
(How it works?)

How to use it 
correctly?

Code example



C++ Memory

• How does stack and heap memory work?
• How to use stack and heap memory in my program?



Stack memory



Memory      

• Stack: used for memory needed to call 

methods(such as local variables), or for inline 

variables

• Heap: Dynamically memory used for 

programmers to allocate. The memory will 

often be used for longer period than stack

• Data: use for constants and initialized global 

objects

• Code: segments that holds compiled instructions

Stack

Heap

data

Code(Text)

High address

low address



Stack Memory

• Stack Allocation (Temporary 

memory allocation):

• Allocate on contiguous blocks of 

memory, in a fixed size

• Allocation happens in function call 

stack

Stack

Heap

data

Code(Text)

High address

low address



int computeA(int a){return a*a;}

int computeFinal(int a, int b){

     int c = computeA(a) + b;

     return c;

}

int main()

{

     int a = 1;

     int b = 2;

     int total = computeFinal(a, b);

     …

}

Stack Allocation (Temporary memory allocation)

Stack
Stack

Heap

data

Code(Text)

main()
a, b

computeFinal()
a, b, c

computeA()
a

High address

low address



Stack

Stack

Heap

data

Code(Text)

main()
a, b

computeFinal()
a, b, c

Stack Allocation (Temporary memory allocation)
High address

low address

int computeA(int a){return a*a;}

int computeFinal(int a, int b){

     int c = computeA(a) + b;

     return c;

}

int main()

{

     int a = 1;

     int b = 2;

     int total = computeFinal(a, b);

     …

}



Stack

Stack

Heap

data

Code(Text)

main()
a, b,total

Stack Allocation (Temporary memory allocation)

Stack free 
memory via 
stack pointer

High address

low address

int computeA(int a){return a*a;}

int computeFinal(int a, int b){

     int c = computeA(a) + b;

     return c;

}

int main()

{

     int a = 1;

     int b = 2;

     int total = computeFinal(a, b);

     …

}



Stack Memory

• Stack Allocation (Temporary memory 
allocation):

• Allocate on contiguous blocks of memory, in 
a fixed size

• Allocation happens in function call stack

• When a function called, its variables got 
allocated on stack; when the function call is 
over, the memory for the variables is 
deallocated. (scope)

• The allocation and deallocation for stack 
memory is automatically done. 

• Fast to allocate memory on stack(1CPU 
operation), faster than heap

Stack

Heap

data

Code(Text)

High address

low address



int* helper()

{

     int a = 3;

     int * p = &a;

     return p;

}

int main(){

      int* h_p = helper();

      …

}

Common mistake with stack memory

Stack

Stack

Heap

data

Code(Text)

Int* h_p     __

Int  a            1

Int* p
helper()

main()

• A common mistake: returning a pointer to a 

stack variable in a helper function

High address

low address



• The stack memory of a function gets automatically 

deallocated after the function returns

Common mistake with stack memory

Stack

Stack

Heap

data

Code(Text)

Int* h_p     __

Int  a            1

Int* p

main()

Undefined behavior

High address

low address

int* helper()

{

     int a = 3;

     int * p = &a;

     return p;

}

int main(){

      int* h_p = helper();

      …

}



• The stack memory of a function gets automatically 

deallocated after the function returns

Common mistake with stack memory

Stack

Stack

Heap

data

Code(Text)

Int* h_p     __

Int  a            1

Int* p

main()

High address

low address

int* helper()

{

     int a = 3;

     int * p = &a;

     return p;

}

int main(){

      int* h_p = helper();

      …

}

Can I have object with 
lifetime exceeding the 
scope it was created?



Heap memory

new
delete



Memory      

• Stack: used for memory needed to call 

methods(such as local variables), or for inline 

variables

• Heap: Dynamically memory used for 

programmers to allocate. The memory will 

often be used for longer period than stack

• Data: use for constants and initialized global 

objects

• Code: segments that holds compiled instructions

Stack

Heap

data

Code(Text)

High address

low address



Stack

Heap

data

Code(Text)

• new expression: create and initialize objects 

on heap (dynamic storage duration) 

Heap Memory
High address

low address

int* p = new int(7); 

T* obj_p = new T(arg0, arg1, arg2,…); 

double* arr_p = new double[]{1, 2, 3}; 

new expression



Heap Memory

Stack

Heap

data

Code(Text)

High address

low address

int* helper()

{

     int a = 3;

     int * p = new int(32);

     return p;

}

int main(){

      int* h_p = helper();

       …

}

int* h_p     _

int  a           3

int* p

new expression



Heap Memory

Stack

Heap

data

Code(Text)

High address

low address

int* helper()

{

     int a = 3;

     int * p = new int(32);

     return p;

}

int main(){

      int* h_p = helper();

       …

}

int* h_p     _

int  a           3

int* p

int           32

new expression



Heap Memory

Stack

Heap

data

Code(Text)

High address

low address

int* helper()

{

     int a = 3;

     int * p = new int(32);

     return p;

}

int main(){

      int* h_p = helper();

       …

}

int* h_p     _

int  a           3

int* p

int           32

new expression



Heap Memory

Stack

Heap

data

Code(Text)

High address

low address

int* helper()

{

     int a = 3;

     int * p = new int(32);

     return p;

}

int main(){

      int* h_p = helper();

       …

}

int* h_p     _

int  a           3

int* p

int           32

NO automatic     

de-allocation 

with scope. 

How can I release the 
resources when they 

are no longer needed?

new expression



Stack

Heap

data

Code(Text)

• delete expression: destroys object previously 
allocated by the new-expression and releases 
obtained memory area back to OS.

Heap Memory
High address

low address

int* p = new int(7);

delete p; 

T* p = new T(arg0, arg1, arg2,…);

delete obj_p; 

double* arr_p = new double[]{1, 2, 3};

delete[] arr_p; 

delete expression



int           32

Heap Memory

Stack

Heap

data

Code(Text)

High address

low address

int* helper()

{

     int a = 3;

     int * p = new int(32);

     return p;

}

int main(){

      int* h_p = helper();

      delete h_p;

      …..

}

int* h_p     _

int  a           3

int* p

//  release the memory

delete expression



Stack

Heap

data

Code(Text)

• Using deleted pointers causes undefined behavior. 

Heap Memory
High address

low address

delete expression



Heap Memory

Stack

Heap

data

Code(Text)

High address

low address

int* helper()

{

     int a = 3;

     int * p = new int(32);

     return p;

}

int main(){

      int* h_p = helper();

      delete h_p;

      std::cout << *h_p << std::endl;

}

int* h_p     _

int  a           3

int* p

Undefine 

behavior

delete expression



Stack

Heap

data

Code(Text)

• Using more than one delete on the same new-ed 

pointer causes undefined behavior

Heap Memory
High address

low address

delete expression



Heap Memory

Stack

Heap

data

Code(Text)

High address

low address

int* helper()

{

     int a = 3;

     int * p = new int(32);

     return p;

}

int main(){

      int* h_p = helper();

      delete h_p;

      delete h_p;

}

int* h_p     _

int  a           3

int* p

Undefine 

behavior

delete expression



Stack

Heap

data

Code(Text)

• A good practice to set the freed pointers to 

nullptr immediately after delete

Heap Memory

ptr = nullptr;

High address

low address

int *ptr  = new int(10);

delete ptr;

//  set the value of the freed pointer

delete expression



Stack

Heap

data

Code(Text)

Heap Memory
High address

low address

int * arr_ptr  = new int[10];

delete arr_ptr;

delete expression for array

Stack
int*    arr_ptr

    ……
int arr[0]

int        arr[9]

……

int arr[0]delete[] arr_ptr;

int        arr[9]



Stack

Heap

data

Code(Text)

• Heap memory is allocated explicitly by new 

expression.

• To release heap memory, program needs 

explicitly call delete expression.

• Unlike stack, memory allocated on heap is 

not necessarily contiguous

Heap Memory
High address

low address



C++ Memory

• How does stack and heap memory work?
• How to use stack and heap memory in my program?



heap-based memory allocation

void foo(){

     int* arr = new int[10];

     arr[0] = 0;

} 

Stack

Stack

Heap

data

Code(Text)

foo()

int*     arrfoo()

    ……
int arr[0]

int        arr[9]

……arr

int main(){

     foo();

     …….

} 

main()



heap-based memory allocation

void foo(){

     int* arr = new int[10];

     arr[0] = 0;

} 

Stack

Stack

Heap

data

Code(Text)

foo()

int*     arrfoo()

    ……
int arr[0]

int arr[9]

int main(){

     foo();

     …….

} 

main()

foo() function’s Stack 
automatically gets popped 

off when out of scope

……



heap-based memory allocation

void foo(){

     int* arr = new int[10];

     arr[0] = 0;

} 

Stack

Stack

Heap

data

Code(Text)

foo()

int*     arrfoo()

    ……
int arr[0]

int arr[9]

int main(){

     foo();

     …….

} 

main()

foo() function’s Stack 
automatically gets popped 

off when out of scope

……
Does this function look correct?

No. It doesn’t release the 
memory of arr when function 

finishes. 



heap-based memory allocation

int* foo(){

     int* arr = new int[10];

     arr[0] = 0;

     return arr;

} 

Stack

Stack

Heap

data

Code(Text)

int*    r_arr

int*     arrfoo()

    ……
int arr[0]

int arr[9]

int main(){

     int* r_arr = foo();

     …….

} 

main()

……

// r_arr is neither used 
nor deleted in later 
program



heap-based memory allocation

int* foo(){

     int* arr = new int[10];

     arr[0] = 0;

     return arr;

} 

Stack

Stack

Heap

data

Code(Text)

int*    r_arr

int*     arrfoo()

    ……
int arr[0]

int arr[9]

demo

int main(){

     int* r_arr = foo();

     …….

} 

main()

……

// r_arr is neither used 
nor deleted in later 
program

Is the program correct?

No. It never releases the 
memory of arr, which causes 

memory leak. 



What is memory leak in C++?

• Memory leakage in C++ is when programmers allocates 

heap-based memory by using new keyword and forgets to 

deallocate the memory



Memory Leak

Stack

Heap

data

Code(Text)

Leaked memory

int* foo(){

     int* arr = new int[10];

     arr[0] = 0;

     return arr;

} 

int main(){

     int* r_arr = foo();

     …….

} 



Memory Leak

Stack

Heap

data

Code(Text)

Leaked memory
Leaked memory

Leaked memory

int* foo(){

     int* arr = new int[10];

     arr[0] = 0;

     return arr;

} 

int main(){

    for( int i = 0; i < 100; i++){

          int* r_arr = foo();

    }…….

} 

Leaked memory

Leaked memory
Leaked memory



Consequences of memory leak ?

• Reduces the amount of available memory, negatively impacts 

the runtime performance

• If memory leaks accumulate over time and left unchecked, may 

thrash or even crash a program



Memory Leak

• What is memory leak in C++?

• Consequences of memory leak?

• How to check if my program has memory leak?

• Valgrind: https://valgrind.org 

$ valgrind --leak-check=full ./exec 

demo

https://valgrind.org/


Memory Leak

• What is memory leak in C++?

• How to check if my program has memory leak?

• How to avoid memory leak in my program?

• Follow RAII principle(Resource acquisition is initialization)

• Use smart pointers instead of raw pointers  



RAII Principle

• RAII principle(Resource acquisition is initialization):  

• Resource acquisition must succeed for initialization to succeed. 

• The resource is guaranteed to be held during its lifetime(between 

when initialization finishes and finalization starts)

• The resources need to be released when not used.



Example. 

obj 
initialized

obj’s 
Resource 
acquired

obj finalized

obj’s 
Resource 
releaseobj in-

use

https://en.cppreference.com/w/cpp/language/lifetime 

An object, obj’s lifetimeBegin:
• storage for its type is 

obtained
• initialization is complete

end:
• the object is destroyed
• Obj’s storage is released

Program 
runtime

https://en.cppreference.com/w/cpp/language/lifetime


C++ pointers



Types of Pointers

• C-style raw pointers

• Smart pointers

• unique_ptr

• shared_ptr 



• For C++ ownership is the responsibility for cleanup.

• C-style raw pointer : does not represents ownership — can do 

anything you want with it, and you can happily use it in ways which 

lead to memory leaks or double-frees.

Ownership  



C-style raw pointers

int* p = new int(7); 

T* obj_p = new T(arg0, arg1, arg2,…); 

double* arr_p = new double[]{1, 2, 3}; 

// a pointer to an object of class T on heap



Rectangle example from last recitation

#pragma once

class Rectangle{

 float width;

 float length; 

 float area;

public:

 Rectangle();

 Rectangle(float w, float l);

 ~Rectangle();

 float& getArea();

... }; rectangle.hpp

#include "rectangle.hpp”

Rectangle::Rectangle(){

 … …

}

Rectangle::Rectangle(float w, float l){

 … …

}

Rectangle::~Rectangle(){

 … …

}

float& Rectangle::getArea(){

… } rectangle.cpp



Rectangle example

#include "rectangle.hpp”

int main(){

   Rectangle rec;

   Rectangle explicit_rec = Rectangle(10.0,12.0);

   Rectangle* rec;

   Rectangle* explicit_rec_ptr = new Rectangle(10.0, 12.0);

Stack

Heap

data

Code(Text)

// Declare a pointer with Rectangle 
type, no Rectangle object created

Rectangle(0.0, 0.0)

Rectangle(10.0,12.0)

// Default constructor

// Parameterized constructor

// create a Rectangle object on heap

Rectangle(10.0, 12.0)



Types of Pointers

• C-style raw pointers

• Smart pointers: wrapper of a raw pointer and make sure the object 

is deleted if it is no longer used

• unique_ptr

• shared_ptr



smart pointer: unique_ptr

• Owns and manages another object through a pointer and disposes 

of that object when the unique_ptr goes out of scope

• Represents the sole owner of resource and will get destroyed and 

cleaned up correctly

• Provides safety to classes and functions that handle objects with dynamic 

lifetime, by guaranteeing deletion on both normal exit and exit through 

exception
template <
 class T,
 class Deleter
> class unique_ptr<T[], Deleter>;

https://en.cppreference.com/w/cpp/memory/unique_ptr 

https://en.cppreference.com/w/cpp/memory/unique_ptr


void foo(){

    std::unique_ptr<int[]> arr = std::make_unique<int[]>(10);

     arr[0] = 0;

} 

Stack Stack

Heap

data

Code(Text)

foo()

std::unique_ptr<int[]>
                   arr 

foo()

    ……
int arr[0]

int arr[9]

int main(){

     foo();

     …….

} 

main()

……



void foo(){

    std::unique_ptr<int[]> arr = std::make_unique<int[]>(10);

     arr[0] = 0;

} 

Stack Stack

Heap

data

Code(Text)

foo()

std::unique_ptr<int[]>
                   arr 

foo()

    ……
int arr[0]

int arr[9]

int main(){

     foo();

     …….

} 

main()

……

std::unique_ptr is 
disposed:

delete[] arr;
is called

…



void foo(){

    std::unique_ptr<int[]> arr = std::make_unique<int[]>(10);

     arr[0] = 0;

} 

Stack Stack

Heap

data

Code(Text)

foo()

std::unique_ptr<int[]>
arr 

foo()

    ……
int arr[0]

int arr[9]

int main(){

     foo();

     …….

} 

main()

………



smart pointer: unique_ptr

 

 std::unique_ptr<Rectangle> rec = new Rectangle(10.0,12.0); 

 std::unique_ptr< Rectangle > default_rec(new Rectangle());

 std::unique_ptr< Rectangle > explicit_rec = std::make_unique< Rectangle>();

 std::unique_ptr< Rectangle > rec2 = explicit_rec ;

std::unique_ptr< Rectangle > rec2 = std::move(explicit_rec );

Unique_ptr needs to call the constructor explicitly

unique_ptr class doesn’t allow copy of unique_ptr

std::move() : transferring of ownership(resources) from one object to another



• a group of owners who are collectively responsible for the resource. 

The last of them to get destroyed will clean it up.

smart pointer: shared_ptr



• std::shared_ptr: a smart pointer that retains shared ownership of an object 

through a pointer. Several shared_ptr objects may own the same object.

• The object is destroyed and its memory deallocated, when the last shared_ptr 

owning the object is destroyed or is assigned to another pointer. (when Reference 

counting==0)
 

 std::shared_ptr<Rectangle> rec = std::make_shared<Rectangle>(); 

 std::shared_ptr< Rectangle> rec2(new Rectangle());

 std::shared_ptr< Rectangle> rec3 = rec2;

smart pointer: shared_ptr
demo



Where to find the resources?

• Memory Heap and Stack: 

https://courses.engr.illinois.edu/cs225/fa2022/resources/stack-heap/  

• RAII: https://learn.microsoft.com/en-us/cpp/cpp/object-lifetime-and-resource-

management-modern-cpp?view=msvc-170 

• Move semantics: https://www.cprogramming.com/c++11/rvalue-references-

and-move-semantics-in-c++11.html 

• Passing arguments by reference: https://www.learncpp.com/cpp-

tutorial/passing-arguments-by-reference/

• Effective C++: 55 specific ways to improve your programs and designs, Scott 

Meyers, 3rd edition

• A Tour of C++, Bjarne Stroustrup

https://courses.engr.illinois.edu/cs225/fa2022/resources/stack-heap/
https://learn.microsoft.com/en-us/cpp/cpp/object-lifetime-and-resource-management-modern-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/object-lifetime-and-resource-management-modern-cpp?view=msvc-170
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.learncpp.com/cpp-tutorial/passing-arguments-by-reference/
https://www.learncpp.com/cpp-tutorial/passing-arguments-by-reference/
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