
CS4414 Recitation 1
Introduction and C++ basic

08/2024

Alicia Yang

1

• TA Help Session: C++ Coding Environment Setup

•Session 2: 7:30 PM - 8:30 PM, Tuesday, 09/03 (led by Noam)

•Location: Uris Hall, Room G01

HW1 will be released this afternoon

Ed discussion announcement

The writeup and starter code are on Canvas

Submission to Gradescope

No slip days 2

Logistics

Overview

• Recitation introduction

•Overview coding environment

• C++ primitive types

3

Recitation Goals

4

How to write good system program in C++

“Clean code does one thing well.
• The logic should be straightforward to make it hard for bugs

to hide,
• the dependencies minimal to ease maintenance,
• error handling complete according to an articulated strategy,
• and performance close to optimal…”

--- Bjarne Stroustrup, the inventor of C++

5

How to write good system program in C++

1. clean and correct code

Write clean and correct code

6

• The basics: C++ types, variable …

• Classes and functions

• Memory management in C++, RAII principle

• Smart pointers in C++

• C++ templates

• Standard containers – std::vector<T>, std::map<K,V>

7

How to write good system program in C++

1. clean and correct code

2. Develop efficient system

Develop efficient system

8

• gprof for program profiling, valgrind for memory check

• Make efficient use of hardware

• Hardware parallelism

• Multithreading and synchronization

Recitation plan

Learn about how to write good system programs in C++

Assignment introduction and explanation

Exam preparation and reviews

9

Make the recitations useful

10

Ask questions

Understand and run the recitation example code

Demystify how C++ system programs work

https://en.cppreference.com/w/

11

CPP Reference

https://en.cppreference.com/w/

12

CPP Reference

13

C++ Coding Environment Setup

CS4414 programming environment

14

• Use Ubuntu (a Linux distribution derived from Debian)

environment to write C++ programming assignments.

• Assignments are submitted to Gradescope

• To standardize the grading environment, we use Ubuntu22.04

as base image to compile and grade your HW assignments

OS and Compiler matters

15

OS macOS Windows Ubuntu

Default
C++

Compiler

Clang
(from Xcode

Build System)

Microsoft Visual
C++ (MSVC)

GCC
(GNU Compiler

Collection)

Different C++ compiler may result in different compilation results

16

int foo(int num) {
 if(num % 2 == 1)
 return num * num;
 else
 return num * num +1;
}

.globl __Z3fooi
; -- Begin function _Z3fooi
 .p2align 2
__Z3fooi: ;
@_Z3fooi
 .cfi_startproc
; %bb.0:
 and w8, w0,
#0x80000001
 cmp w8, #1
 mul w8, w0, w0
 cinc w0, w8, ne
 ret

.cfi_startproc
 endbr64
 movl %edi, %edx
 movl %edi, %eax
 shrl $31, %edx
 imull %edi, %eax
 addl %edx, %edi
 andl $1, %edi
 subl %edx, %edi
 xorl %edx, %edx
 cmpl $1, %edi
 setne %dl
 addl %edx, %eax
 ret

Clang compiler GCC compiler

% clang++ -S -o main.s main.cpp % g++ -S -o main.s main.cpp

C++ Coding Environment for course assignments

18

• Compilation tools: GNU Compiler Collection(GCC) with

gcc-8 or recent

• C++ compiler version: 20 or 23
Where can I find a
Ubuntu machine

with correct
setup?

C++ Coding Environment for course assignments

19

• Servers from Cornell Engineering cluster:

• ugclinux server (link)

Can I access these
servers from my

home?

Yes, remote access

https://it.coecis.cornell.edu/cis/cisugcvm/

Remote access Linux Ubuntu server via ssh

20

$ssh ugclinux
Set up connection
to the remote
server

Cluster of Linux
servers at Cornell

Command:
$ ssh [net_id]@ugclinux.cs.cornell.edu

Remote access Linux Ubuntu server via ssh

21

$ cd ~
$./hello.o

Cluster of Linux
servers at Cornell

Transmit data
across network

Send commands to be
executed on remote server

$ cd ~
$./hello.o

Connect to remote ugclinux server

22

From terminal login to ugclinux server, via ssh tunnel

 % ssh [your netid]@ugclinux.cs.cornell.edu

Command
line

Connect to remote ugclinux server

23

Download Visual Studio Code on your computer (link)

Use Remote-ssh on VS code to access ugclinux

VS Code

https://code.visualstudio.com/

More detailed step-by-step tutorial

24

• TA Help Session: C++ Coding Environment Setup

•Session 1: 7:30 PM - 8:30 PM, Thursday, 08/29 (led by Austin)

•Session 2: 7:30 PM - 8:30 PM, Tuesday, 09/03 (led by Noam)

•Location: Uris Hall, Room G01

25

Running C++ programs

Helloworld.cpp example

26

#include <iostream>

int main() {
 std::cout << "Hello world!" << std::endl;
 return 0;
}

demo

Program starting point
Every C++ program must have
exactly one main() function.

Helloworld.cpp example

27

Instruct the compiler to include
the declaration of the standard
stream I/O facilities in iostream

#include <iostream>

int main() {
 std::cout << "Hello world!" << std::endl;
 return 0;
}

Helloworld.cpp example

28

#include <iostream>

int main() {
 std::cout << "Hello world!" << std::endl;
 return 0;
}

Operator << , writes its second argument to its first.
(write “Hello world” to

the standard output stream std::cout)

std:: (standard library)
specifies that the name cout to be found

in the standard library namespace

C++ is a compiled language

29

Source
code

Machine
code

Ready to
Run!

…Source file 1 Source file 2

Object file 1 Object file 2 …

Executable file

compile

link

GCC

Compile and Run your C++ Code

30

1. Compile your C++ program with simple line below

% g++ -std=c++20 -Wall helloworld.cpp -o helloworld

• Flags:

• -std=c++20: specify the compiler version to use C++20

• -Wall: allow all compiler warnings to be printed out

• -o: specify the name of the output executable

Command
line

How to debug my code?

31

demo

1. Compile your C++ program with line below

% g++ -std=c++20 -g -Wall helloworld.cpp -o helloworld

• Flags:

• -g flag: include debug symbols

32

C++ Built-in Types

What is C++?

33

A federation of related languages, with four primary sublanguages

• C: C++ is based on C, while offering approaches superior to C. Blocks,

statements, processor, built-in data types, arrays, pointers, etc., all come

from C

• Object-Oriented C++: “C with Classes”, classes including constructor,

destructors, inheritance, virtual functions, etc.

• Template C++: generic programming language. Gives a template, define

rules and pattern of computation, to be used across different classed.

• STL(standard template library): a special template library with conventions

regarding containers, iterators, algorithms, and function objects

C++ types

34

• Primitive(fundamental)

data types

• bool / bool*

• char / char*

• int / int*

• float / float*

• double / double*

• ……

• Derived data types

• pointer

• array

• function

• User-defined data types

• class

• struct

C++ types

35

• bool // boolean, possible values are true and false

• char // character, such as ‘a’, ‘z’, ‘9’, ‘\’’ ..

• int // integer, such as 36, -273, 10006, ..

• double //double-prevision floating-point number, such as 3.14, 230421.0, ..

• unsigned // non-negative integer, such as 0, 365,…

• uint8_t // 8-bit(1-byte) unsigned integer, such as 0, .. 200, .. 255

C++ is strongly typed

36

• A declaration is a statement that introduce a name to the

program with a specified type

int x ; // declaration

type

Variable

C++ is strongly typed

37

• A declaration is a statement that introduce a name to the program,

with a specified type

• A declaration can also follow with an initialization

int x ; // declaration

type variable

int x = 5; // declaration + initialization

Initial value

C++ is strongly typed

38

• A declaration is a statement that introduce a name to the program

with a specified type

• A declaration can also follow with an initialization

• Later, you can use variable x in expressions such as

int x ; // declaration

int x = 5; // declaration + initialization

int y = x + 1; // initialization of y using x

x = 7; // reassignment

C++ is strongly typed

39

• A C++ variable has a name, a type, a value and an address

in memory

• A type: defines a set of possible values and operations

that this variable can do

int x = 5;

type

variable
value

C++ is strongly typed

40

• A C++ variable has a name, a type, a value and an address

in memory

• A type: defines a set of possible values and operations

that this variable can do

• A value: a set of bits to be interpreted by its type

int x = 5;

type

variable
value

C++ fundamental data type

41

• Integer types with different sizes and signedness

• int, short, unsigned int, long, long long, unsigned long, …

• int8_t, int16_t, int32_t, int64_t, …

• uint8_t, uint16_t, uint32_t, uint64_t, …

• bool // each boolean variable has 1 byte(8 bit)

• char

• int

• double

• uint8_t

C++ fundamental type correspond to fixed sizes

42

C++ fundamental data type

43

• How do I find out the size of a built-in type?

• Use the built-in function sizeof(variable name) or

sizeof(<type>) to find out the size of the variable’s type

int x = 0;

std::cout << sizeof(x) << std::endl; // print 4

std::cout << sizeof(long long int) << std::endl; // print 4

Demo

Address

44

&

44

int32_t x = 0;

memory

…

…

int32_t x = 0; 0x00 0x00 0x00 0x00

0x00 is a pair of hex number
(0x is the prefix, 00 is hex digits)

1 byte

4 bytes

int32_t x =
0;

Address

45

&

45

memory

…

…

0x00 0x00 0x00 0x00

1 byte

4 bytes

Where does x live
in memory

exactly?

Address

46

• Can obtain the address (represented in hex) with the & operator

int32_t x = 0;

std::cout << &x << std::endl;

// prints to the address of x
 for example, 0x7ffd55bdaa4

&

Address

47

• Can obtain the address (represented in hex) with the & operator

int32_t x = 0;
std::cout << &x << std::endl;

// prints to the address of x
 for example, 0x7ffd55bdaa4

&

Address

48

• Can obtain the address (represented in hex) with the & operator

• What happens if you use an uninitialized variable?

int32_t x ;

std::cout << x << std::endl;

std::cout << &x << std::endl;

&
Demo

Address

49

• Can obtain the address (represented in hex) with the & operator

• What happens if you use an uninitialized variable?

int32_t x ; // uninitialized value

std::cout << x << std::endl;
 // the value of x is undefined

std::cout << &x << std::endl;

// prints 0x7ffd55bdaa4

&

int32_t x = 0;

Address

50

memory

…

…

0x00 0x00 0x00 0x00

1 byte

4 bytes

&x

&

&x is the memory address of x

Can I store &x in a
variable to use in

the future?

Pointers

51

• A pointer is a variable that stores a memory address.

*

int32_t x = 0;

memory

…

…

0x00 0x00 0x00 0x00

1 byte

4 bytes

&x

int32_t* px;

px = &x;

Pointers

52

• A pointer is a variable that stores a memory address.

• A pointer is declared just like a variable but with * after the type

*

int32_t* px;

A pointer that could point to an integer

Pointers

53

• Dereferencing the pointer, could give us the value stored in that

memory address

*

int32_t x = 0;
int32_t* px;
px = &x;

std::cout << *px << std::endl;

memory

…

…

0x00 0x00 0x00 0x00

1 byte

4 bytes

&x

// prints 0

54

Systems Performance

Why C++?

55

C++ is an efficient and fast language

• Performance benefit

• Fine-grained memory management

System Performance

What do we mean by
performance?

• Latency: time taken to
compute

• Throughput: number of
operations per second

56

Reasoning about system performance

• Theoretical improvements don’t always translate to better

runtimes

57

Insertion sort outperforms quick sort in some cases

Why?

1. Insertion sort is iterative – no overhead from recursive calls

(good for sorting a small set)

2. Insertion sort is fast when data is nearly sorted

Reasoning about system performance

• Theoretical improvements don’t always translate to better runtimes

• Which algorithm? A system can be very complex with many features

• A = processing files, B = printing 1 million lines of output

58

BA

Fairly optimized code

Sequential program with 2 steps

Highly inefficient code

Reasoning about system performance

• Theoretical improvements don’t always translate to better runtimes

• Which algorithm? A system can be very complex with many features

• What if step A takes about 99% of the total time? We need to profile and

understand performance characteristics of code we write
59

BA

Fairly optimized code

Sequential program with 2 steps

Highly inefficient code

Reasoning about system performance

• Theoretical improvements don’t always translate to better runtimes

• Which algorithm? A system can be very complex with many features

• What if the code that implements the algorithm is inefficient?

• Sometimes heuristics work better

60

References

61

• A Tour of C++, Bjarne Stroustrup, 2nd edition

• Effective C++: 55 specific ways to improve your programs and designs, Scott Meyers, 3rd edition

• Large Scale C++, Process and Architecture, John Lakos, Volume 1

• GDB documentation: https://www.sourceware.org/gdb/

• https://www.geeksforgeeks.org/gdb-step-by-step-introduction/

• GDB quickstart tutorial: https://web.eecs.umich.edu/~sugih/pointers/gdbQS.html

• How does gbd work? https://www.aosabook.org/en/gdb.html

https://www.geeksforgeeks.org/gdb-step-by-step-introduction/
https://www.geeksforgeeks.org/gdb-step-by-step-introduction/
https://web.eecs.umich.edu/~sugih/pointers/gdbQS.html
https://www.aosabook.org/en/gdb.html

	Slide 1: CS4414 Recitation 1 Introduction and C++ basic
	Slide 2
	Slide 3: Overview
	Slide 4: Recitation Goals
	Slide 5
	Slide 6: Write clean and correct code
	Slide 7
	Slide 8: Develop efficient system
	Slide 9: Recitation plan
	Slide 10: Make the recitations useful
	Slide 11
	Slide 12
	Slide 13
	Slide 14: CS4414 programming environment
	Slide 15: OS and Compiler matters
	Slide 16
	Slide 18: C++ Coding Environment for course assignments
	Slide 19: C++ Coding Environment for course assignments
	Slide 20: Remote access Linux Ubuntu server via ssh
	Slide 21: Remote access Linux Ubuntu server via ssh
	Slide 22: Connect to remote ugclinux server
	Slide 23: Connect to remote ugclinux server
	Slide 24: More detailed step-by-step tutorial
	Slide 25
	Slide 26: Helloworld.cpp example
	Slide 27: Helloworld.cpp example
	Slide 28: Helloworld.cpp example
	Slide 29: C++ is a compiled language
	Slide 30: Compile and Run your C++ Code
	Slide 31: How to debug my code?
	Slide 32
	Slide 33: What is C++?
	Slide 34: C++ types
	Slide 35: C++ types
	Slide 36: C++ is strongly typed
	Slide 37: C++ is strongly typed
	Slide 38: C++ is strongly typed
	Slide 39: C++ is strongly typed
	Slide 40: C++ is strongly typed
	Slide 41: C++ fundamental data type
	Slide 42: C++ fundamental type correspond to fixed sizes
	Slide 43: C++ fundamental data type
	Slide 44: Address
	Slide 45: Address
	Slide 46: Address
	Slide 47: Address
	Slide 48: Address
	Slide 49: Address
	Slide 50: Address
	Slide 51: Pointers
	Slide 52: Pointers
	Slide 53: Pointers
	Slide 54
	Slide 55: Why C++?
	Slide 56: System Performance
	Slide 57: Reasoning about system performance
	Slide 58: Reasoning about system performance
	Slide 59: Reasoning about system performance
	Slide 60: Reasoning about system performance
	Slide 61: References

