CS441 4 Recitation 1

Intfroduction and C++ basic

08/2024
Alicia Yang

Logistics

* TA Help Session: C++ Coding Environment Setup
*Session 2: 7:30 PM - 8:30 PM, Tuesday, 09/03 (led by Noam)
el ocation: Uris Hall, Room GO1

HW1 will be released this afternoon
Ed discussion announcement
The writeup and starter code are on Canvas
Submission to Gradescope
No slip days

Overview

* Recitation introduction

* Overview coding environment

* C++ primitive types

Recitation Goals

How to write good system program in C++

“Clean code does one thing well.

The logic should be straightforward to make it hard for bugs
to hide,

the dependencies minimal to ease maintenance,

error handling complete according to an articulated strategy,
and performance close to optimal...”

--- Bjarne Stroustrup, the inventor of C++

‘ How to write good system program in C++

[1. clean and correct code J

Write clean and correct code

* The basics: C++ types, variable ...

* Classes and functions

* Memory management in C++, RAIl principle
* Smart pointers in C++

e C++ templates

* Standard containers — std::vector<T>, std:map<<K,V>

‘ How to write good system program in C++

[1. clean and correct code J

[2. Develop efficient system J

Develop efficient system

* gprof for program profiling, valgrind for memory check
* Make efficient use of hardware
* Hardware parallelism

* Multithreading and synchronization

Recitation plan

'ﬁ‘f—. Learn about how to write good system programs in C++

Assignment introduction and explanation

T‘ Exam preparc:’rion and reviews

‘Mc:ke the recitations useful

/>

Ask questions

Understand and run the recitation example code

Demystify how C++ system programs work

10

CPP Reference

https://en.cppreference.com/w/

11

https://en.cppreference.com/w/

LCPP Reference
Example

Demonstrates how to inform a program about where to find its input and where to write its results.
A possible invocation: ./convert table in.dat table out.dat

Run this code

#include =cstdlib=>
#include <iomanip=>
#include <iostream=

int main(int argc, char *argv[])
{

std::cout =< "argc == " << argc << '\n’;
for (int ndx{}; ndx '= argc; ++ndx)
std::cout << "argv[" << ndx << "] == " << std::quoted(argv[ndx]) << '\n';
std::cout =< "argv[" == argc =< "] ="
<< static cast<void*>(argv[argc]) << '\n’;

T

return argc == 3 ? EXIT _SUCCESS : EXIT_FAILURE; // optional return value

Possible output:

argc ==
argv[@] == "./convert"
argv[l] == "table in.dat"
argv[2] == "table out.dat"”
argv[3] == 0

12

C++ Coding Environment Setup

CS441 4 programming environment

* Use Ubuntu (a Linux distribution derived from Debian)

environment to write C++ programming assignments.
* Assignments are submitted to Gradescope

* To standardize the grading environment, we use Ubuntu22.04

as base image to compile and grade your HW assignments

OS and Compiler matters

OS macOS Windows Ubuntu
Default
Clang Microsoft Visual GCC .
C++ (from Xcode C++ (MSVC) (GNU Compiler
Compiler | Build System) Collection)

Different C++ compiler may result in different compilation results

15

Clang compiler

% clang++ -S -0 main.s main.cp

globl _ Z3fooi

; -- Begin function _Z3fooi

.p2align 2
__Z3fooi:
@ _Z3fooi
.cfi_startproc
; %bb.0:

and w8, w0,
#0x80000001

cmpwa8, #1

mul w8, w0, w0

cinc w0, w8, ne

ret

int foo(int num) {
if(num % 2 == 1)
return num * num;
else
return num * num +1;

GCC compiler

% g++ -S -0 main.s main.cpp

.cfi_startproc
endbr64d

movl %edi, %edx
movl %edi, %eax
shrl S31, %edx
imull %edi, %eax
add|%edx, %edi

andIS1, %edi
subl %edx, %edi
xorl %edx, %edx
cmpl S1, %edi
setne %d|
add|%edx, %eax
ret

C++ Coding Environment for course assignments

* Compilation tools: GNU Compiler Collection(GCC) with

gcc-8 or recent

* C++ compiler version: 20 or 23

Where can | find a
Ubuntu machine
with correct

setup?

18

C++ Coding Environment for course assignments

* Servers from Cornell Engineering cluster:

* ugclinux server (link)

Can | access these
servers from my

home?

Yes, remote access

19

https://it.coecis.cornell.edu/cis/cisugcvm/

Remote access Linux Ubuntu server via ssh

Command:
S ssh [net_id]@ugclinux.cs.cornell.edu

Set up connection
to the remote
server

Sssh ugclinux

Cluster of Linux
servers at Cornell
20

Remote access Linux Ubuntu server via ssh

Scd”™
S ./hello.o

Send commands to be
executed on remote server ¥ | \ .

Scd ™
$./hello.o

TSN NES

Transmit data
across network

Cluster of Linux
servers at Cornell

Connect to remote ugclinux server

From terminal login to ugclinux server, via ssh tunnel

% ssh [your netid]@ugclinux.cs.cornell.edu

-I o9 = alicia — -zsh — 80x24

Last login: Tue Jan 24 22:18:38 on ttys@oe L]
aliciaRalicias-MacBook-Pro-2 ~ % ssh [your netidflRugclinux.cs.cornell.edu

22

Connect to remote ugclinux server

Download Visual Studio Code on your computer (link)

Use Remote-ssh on VS code to access ugclinux

Visual Studio Code
EXPLORER

~* NO FOLDER OPENED Connect to Host... Remote-SSH
You have not yet opened a folder. Connect Current Window to Host...
Open SSH Configuration File...

Open Folder Getting Started with SSH
Open Folder in Container...

You can clone a repository locally. Create Dev Contai
reate Dev Container..

Clone Reposito Clone Repository in Container Volume...

Attach to Running Container...
To learn more about how to use git and source

Add Dev Container Configuration Files...
control in VS Code

Try a Dev Container Sample...
, or Getting Started with Dev Containers

create a new Java project by clicking the button Install Additional Remote Extensions...
below.

You can also

Create Java Project

> OUTLINE
TIMELINE
2 MAVEN

https://code.visualstudio.com/

More detailed step-by-step tutorial

* TA Help Session: C++ Coding Environment Setup
*Session 1: 7:30 PM - 8:30 PM, Thursday, 08/29 (led by Austin)

*Session 2: 7:30 PM - 8:30 PM, Tuesday, 09/03 (led by Noam)
el ocation: Uris Hall, Room G0O1

Running C++ programs

Helloworld.cpp example

int main() {
std::cout << << std::endl;
return O;

Program starting point
Every C++ program must have
exactly one main() function.

26

Helloworld.cpp example

#include <iostream>

int main() {
std::cout <<
return O;

Instruct the compiler to include
the declaration of the standard
stream |/O facilities in iostream

<< std::endl;

27

Helloworld.cpp example

std:: (standard library)
specifies that the name cout to be founc
in the standard library namespace

int main(
std::cout << << std::endl;
return O;

Operator <<, writes its second argument to its first.
(write “Hello world” to
the standard output stream std::cout) 28

‘C++ is a compiled language

GCC

|

Source
code

|

Machine
code

compile

Source file 1

v

Object file 1

Ready to

Run!

Source file 2

v

Object file 2

Executable file

29

Command
Compile and Run your C++ Code line

1. Compile your C++ program with simple line below

% gt++ -std=ct++20 -Wall helloworld.cpp -o helloworld

* Flags:
* -std=c++20: specify the compiler version to use C++20
* -Wall: allow all compiler warnings to be printed out
* -0: specify the name of the output executable

30

How to debug my code? @

1. Compile your C++ program with line below

% gt+ -std=ct++20 -g -Wall helloworld.cpp -o helloworld

* Flags:
* -g flag: include debug symbols

31

C++ Built-in Types

What is C++2

A federation of related languages, with four primary sublanguages

mam) ° C: C++ is based on C, while offering approaches superior to C. Blocks,
statements, processor, built-in data types, arrays, pointers, etc., all come

from C

* Object-Oriented C++: “C with Classes”, classes including constructor,
destructors, inheritance, virtual functions, etc.

* Template C++: generic programming language. Gives a template, define
rules and pattern of computation, to be used across different classed.

* STL(standard template library): a special template library with conventions
regarding containers, iterators, algorithms, and function objects

33

C++ types

* Primitive(fundamental)

data types
* bool / bool*

char / char®

int / int*
float / float*
double / double*

* Derived data types

* pointer
° array

e function

* User-defined data types

* class

* struct

34

C++ types

bool // boolean, possible values are true and false

char // character, such as ‘a’, ‘z’, ‘97, ‘\” ..

int // integer, such as 36, -273, 10006, ..

double //double-prevision floating-point number, such as 3.14, 230421.0, ..

unsigned // non-negative integer, such as 0, 365,...

vint8_t // 8-bit(1-byte) unsigned integer, such as O, .. 200, .. 255

35

C++ is strongly typed

e A declaration is a statement that infroduce a name to the
program with a specified type

int x; //declaration

type/ \

Variable

36

C++ is strongly typed

int x; // declaration
e A declaration can also follow with an initialization

Int x=5; //declaration + initialization

O\ T

type variable Initial value

37

C++ is strongly typed

* A declaration is a statement that introduce a name to the program
with a specified type

int x; // declaration

e A declaration can also follow with an initialization

int x=05; // declaration + initialization

* Later, you can use variable x in expressions such as

nt y=x+1; // initialization of y using x

X=7; // reassignment .

C++ is strongly typed

* A C++ variable has a name, a type, a value and an address
in memory

* A type: defines a set of possible values and operations
that this variable can do

Int Xx=5;

type \ \
, value
variable

39

C++ is strongly typed

* A C++ variable has a name, a type, a value and an address
in memory

* A type: defines a set of possible values and operations
that this variable can do

* A value: a set of bits to be interpreted by its type

Int x=25;

type \ \
_ value
variable

40

C++ fundamental data type

* Integer types with different sizes and signedness

* int, short, unsigned int, long, long long, unsigned long, ...

* int8 t,int16_t, int32 _t, int64 _t, ...

* uint8_t, uint16_t, uint32_t, uinté4 _t, ...

C++ fundamental type correspond to fixed sizes

* bool // each boolean variable has 1 byte(8 bit)

* char

* int

* double

* yint8 t "

C++ fundamental data type

* How do | find out the size of a built-in type?

e Use the built-in function sizeof(variable name) or

sizeof(<type>) to find out the size of the variable’s type

ntx=0;
std::cout << sizeof(x) << std::endl; // print 4

std::cout << sizeof(long long int) << std::endl; // print 4

43

& ‘Address

Int32_ t x =0;

0x00 is a pair of hex number
(Ox is the prefix, 00 is hex digits)

0x00 | 0x00

0x00

& ‘Address

Where does x live

In memory

@®nt32 t x
2 0o:

0x00 | Ox00 | Ox00 | 0x00
—

1 byte

| I |
\ 4 bytes /

45

& ‘Address

* Can obtain the address (represented in hex) with the & operator

nt32 tx=0;
std::cout << &x << std::endl;

// prints to the address of x
for example, Ox7ffd55bdaad

46

& ‘Address

* Can obtain the address (represented in hex) with the & operator

nt32 tx=0;
std::cout << &x << std::endl;

// prints to the address of x
for example, Ox7ffd55bdaad

47

D
& ‘Address

* Can obtain the address (represented in hex) with the & operator

std::cout << &x << std::endl;

* What happens if you use an uninitialized variable?

int32 t x;

std::cout << x << std::endl;

48

& ‘Address

* Can obtain the address (represented in hex) with the & operator

std::cout << &x << std::endl;

// prints Ox7ffd55bdaad

* What happens if you use an uninitialized variable?

int32_ t x; // uninitialized value

std::cout << x << std::endl;
// the value of x is undefined

49

Can | store &xin a3

& ‘Address . .
variable to use in

the future?

-

int32 t x =0; & x

/

&x is the memory address of x \

memory

~

0x00

0x00

0x00

Ox

00

I
1 byte

|
4 bytes

/

50

Pointers

* A pointer is a variable that stores a memory address.

int32 t x =0;
int32 t* p)V
PX = &X;

-~

&X
/

-

memory \
0x00 | 0x00 [0x00 | Ox00
——
1 byte
\ I)
4 bytes /

51

* Pointers

* A pointer is a variable that stores a memory address.

* A pointer is declared just like a variable but with * after the type

int32 t* px;

A pointer that could point to an integer

52

X

Pointers

* Dereferencing the pointer, could give us the value stored in that

memory address /

int32_ t x =0;
int32_t* px; & X
pPX = &X;

std::cout << *px << std::endl;\

memory \
0x00 | Ox00 | Ox00 | 0x00
_'_l
1 byte
| |
|
4 bytes /

// prints O

53

Systems Performance

54

Why C++¢

C++ is an efficient and fast language
* Performance benefit

* Fine-grained memory management

With great power

Come great; responsibility

55

= System Performance

17 Y_l(‘ u

What do we mean by

e et

performance? e

.

.'-' !'V.glv 'Ls_“'-l “' "
B0 b

‘S8 Latency: time taken to h i
compute Vol

.48 ° Throughput: number of b:_,» 2
operations per second HERNON

W

N W
v ./ ~ e
A,

)R -

2

Y

-

A

56

Reasoning about system performance

* Theoretical improvements don’t always translate to better

runtimes

Insertion sort outperforms quick sort in some cases
Why?
1. Insertion sort is iterative — no overhead from recursive calls

(good for sorting a small set)
2. Insertion sort is fast when data is nearly sorted

Reasoning about system performance

* Which algorithm? A system can be very complex with many features

. Sequential program with 2 steps E

Fairly optimized code Highly inefficient code

* A = processing files, B = printing 1 million lines of output

58

Reasoning about system performance

* Which algorithm? A system can be very complex with many features

. Sequential program with 2 steps E

Fairly optimized code Highly inefficient code

* What if step A takes about 29% of the total time? We need to profile and
understand performance characteristics of code we write

Reasoning about system performance

* What if the code that implements the algorithm is inefficient?

e Sometimes heuristics work better

60

References

* A Tour of C++, Bjarne Stroustrup, 2"¢ edition
* Effective C++: 55 specific ways to improve your programs and designs, Scott Meyers, 3™ edition
* Large Scale C++, Process and Architecture, John Lakos, Volume 1

* GDB documentation: hitps://www.sourceware.org/gdb/

* hitps://www.geeksforgeeks.org/gdb-step-by-step-introduction/

» GDB quickstart tutorial: https://web.eecs.umich.edu /~sugih /pointers /gdbQS.html

* How does gbd work?2 https://www.aosabook.org/en/gdb.html

61

https://www.geeksforgeeks.org/gdb-step-by-step-introduction/
https://www.geeksforgeeks.org/gdb-step-by-step-introduction/
https://web.eecs.umich.edu/~sugih/pointers/gdbQS.html
https://www.aosabook.org/en/gdb.html

	Slide 1: CS4414 Recitation 1 Introduction and C++ basic
	Slide 2
	Slide 3: Overview
	Slide 4: Recitation Goals
	Slide 5
	Slide 6: Write clean and correct code
	Slide 7
	Slide 8: Develop efficient system
	Slide 9: Recitation plan
	Slide 10: Make the recitations useful
	Slide 11
	Slide 12
	Slide 13
	Slide 14: CS4414 programming environment
	Slide 15: OS and Compiler matters
	Slide 16
	Slide 18: C++ Coding Environment for course assignments
	Slide 19: C++ Coding Environment for course assignments
	Slide 20: Remote access Linux Ubuntu server via ssh
	Slide 21: Remote access Linux Ubuntu server via ssh
	Slide 22: Connect to remote ugclinux server
	Slide 23: Connect to remote ugclinux server
	Slide 24: More detailed step-by-step tutorial
	Slide 25
	Slide 26: Helloworld.cpp example
	Slide 27: Helloworld.cpp example
	Slide 28: Helloworld.cpp example
	Slide 29: C++ is a compiled language
	Slide 30: Compile and Run your C++ Code
	Slide 31: How to debug my code?
	Slide 32
	Slide 33: What is C++?
	Slide 34: C++ types
	Slide 35: C++ types
	Slide 36: C++ is strongly typed
	Slide 37: C++ is strongly typed
	Slide 38: C++ is strongly typed
	Slide 39: C++ is strongly typed
	Slide 40: C++ is strongly typed
	Slide 41: C++ fundamental data type
	Slide 42: C++ fundamental type correspond to fixed sizes
	Slide 43: C++ fundamental data type
	Slide 44: Address
	Slide 45: Address
	Slide 46: Address
	Slide 47: Address
	Slide 48: Address
	Slide 49: Address
	Slide 50: Address
	Slide 51: Pointers
	Slide 52: Pointers
	Slide 53: Pointers
	Slide 54
	Slide 55: Why C++?
	Slide 56: System Performance
	Slide 57: Reasoning about system performance
	Slide 58: Reasoning about system performance
	Slide 59: Reasoning about system performance
	Slide 60: Reasoning about system performance
	Slide 61: References

