
CS4414 Recitation 13
Prelim2 Review

11/22/2024

Alicia Yang

Disclaimer: due to time constraints, the review recitation can not cover everything lectures/recitations that could be appear ed on the exam. The selections of topics are
based on questions that raised most commonly on Ed. Please also review other lectures/recitations that are not covered here to have a better preparation.

Logistics

2

Additional review session

• TA: Abhijeet Saha

• Time: 12/3 (Tuesday) 7-8PM

• Location: Gates G01

C++ Compile-time and
runtime concepts

• Constexpr (lecture 9)

• Templates (lecture 10, recitation 6)

• Linking (lecture 13, recitation 8)

Cornell CS4414 - Spring 2023 4

int fibonacci(int n)

{

 if(n <= 1)

 return n;

 return fibonacci(n-2)+fibonacci(n-1);

}

fibonacci(5) = fibonacci(3)+Fibonacci(4)

fibonacci(4) = fibonacci(2)+Fibonacci(3)

fibonacci(3) = fibonacci(1)+Fibonacci(2)

fibonacci(2) = fibonacci(0)+Fibonacci(1)

fibonacci(1) = 1

Fibonacci(0) = 1

Due to repeatitive pattern, requires 15 calls to Fibonacci!

fibonacci

• Expresses the promise that something will not be changed.

• The compiler can then use that knowledge to produce better code, in
situations where an opportunity arises.

• Can only be used if you genuinely won’t change the value!

Cornell CS4414 - Spring 2023 5

C++ “CONST” ANNOTATION

const int MAXD = 10000; // length of myvec

Char myvec[MAXD];

Example of declaring a compile-time constant

void point_x (const int& x){

 std::cout << x << std::endl;

}

Example of marking an argument to a
method with const

constexpr

• This keyword says that “this expression should be entirely constant”.
The expression can even include function calls.

• C++ will complain if for some reason it can’t compute the result at
compile time: a constant expression turns into a “result” during the
compilation stage.

• If successful, it treats the result as a const.

Cornell CS4414 - Spring 2023 7

constexpr

• This keyword says that “this expression should be entirely constant”.
The expression can even include function calls.

• C++ will complain if for some reason it can’t compute the result at
compile time: a constant expression turns into a “result” during the
compilation stage.

• If successful, it treats the result as a const.

Cornell CS4414 - Spring 2023 8

constexpr float x = 42.0;
constexpr float z = exp(5, 3);
constexpr int i; // Error! Not initialized
int j = 0;
constexpr int k = j + 1; //Error! j not a constant expression

3. true/false

A constexpr expression cannot include variables that hold values the

program reads from a user or from some other kind of input.

If a constexpr performs a zero divide, then when you run C++ to

compile the code, the compiler will exit with a zero-divide exception.

gprof won’t count the time C++ spends evaluating a constexpr when it

prints a formatted profile report for the program.

11

Practice prelim question

3. true/false

A constexpr expression cannot include variables that hold values the

program reads from a user or from some other kind of input.

If a constexpr performs a zero divide, then when you run C++ to

compile the code, the compiler will exit with a zero-divide exception.

gprof won’t count the time C++ spends evaluating a constexpr when it

prints a formatted profile report for the program.

12

Practice prelim question

F

Compile-time error

T

Constexpr needs to
be evaluated at
compile-time

Runtime input

T
Gprof measures the
program’s runtime

profiling

C++ Compile-time and
runtime concepts

• Constexpr (lecture 9)

• Templates (lecture 10, recitation 6)

• Linking (lecture 13, recitation 8)

• Compile time type checking and type-based specialization.

• A way to create classes that are specialized for different types

• Conditional compilation, with dead code automatically removed

• Code polymorphism and varargs without runtime polymorphism

Cornell CS4414 - Spring 2023 14

The goal for template

• Suppose we have an array of objects of type int:

 int myArray[10];

• With a template, the user supplies a type by coding something like
Things<long>, like:

 template<Typename T>
 T myArray[10];

• More example: std::vector

Cornell CS4414 - Spring 2023 15

The basic idea is extremely simple

template<
 class T,
 class Allocator = std::allocator<T>
> class vector;

http://en.cppreference.com/w/cpp/memory/allocator

• template<typename T>
class Things {

• T myArray[10];
 T getElement(int); // People often index by a constant, hence not int&

 void setElement(int,T&);

 }

Cornell CS4414 - Spring 2023 16

Template class

• Templates can also be associated with individual functions. The
entire class can have a type parameter, but a function can have its
own (perhaps additional) type parameters

Template<typename T>
T max(T a, T b) // Again, not T& to allow caller to provide a constant
{
 return a>b? a : b; // T must support a > b

}

Cornell CS4414 - Spring 2023 17

This really should require that T be a type
supporting “comparable”. We’ll see how to

specify that restriction in a moment.

Template functions

18

Template: compile-time check

template<class T, T::type n = 0>

class X;

struct S {

 using type = int;

};

using T1 = X<S, int, int>; // error: too many arguments

using T2 = X<>; // error: no default argument for first template parameter

using T3 = X<1>; // error: value 1 does not match type-parameter

using T4 = X<int>; // error: substitution failure for second template parameter

using T5 = X<S>; // OK
https://en.cppreference.com/w/cpp/language/templates

• Templates are expanded at

compiler time
• it does type-checking before

template expansion.

https://en.cppreference.com/w/cpp/language/templates

3. true/false

Template code is expanded (as much as possible) at compile time. As a
result, gdb and the profiler won’t necessarily be able to associate bugs
that cause a crash to the proper line within the template, or give
proper runtime cost-accounting for templated methods

In gdb or gprof, a variable with a templated type will often have more

type-signature content than you used to define that variable, because
of expansion of default template type parameters and argument.

19

Practice prelim question

T

T

Multithreading

• Lecture 14-17

• Recitation 9-11

Multithreading

• Threads management

• Launching threads

• Threads completion

• Synchronization

• Race condition

• Atomic

• Mutex

• Locks

Concurrency

https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

26

https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

Launching thread (via std::thread)

• Create a new thread object.

• Pass the executing code to be called (i.e, a callable object)

into the constructor of the thread object.

•Once the object is created a new thread is launched, it will

execute the code specified in callable

27
#include <thread> // part of the C++ Standard Library

• Launching a thread using function pointers and function parameters

void func(params)
{
 // Do something
}

std::thread thread_obj(func, args);

Launching thread --- function pointer

28

Joining threads with std::thread

• Wait for a thread to complete

• Ensure that the thread was finished before the function was exited

• Clean up any storage associated with the thread

• join() can be called only once for a given thread

std::thread thread_obj(func, params);

Thread_obj.join();

29

demo

Multithreading

• Threads management

• Launching threads

• Threads completion

• Synchronization

• Race condition

• Atomic

• Mutex

• Locks

Sharing data among threads ---race condition

• Race condition:

• The situation where the outcome depends on the relative

ordering of execution of operations on two or more threads;

the threads race to perform their respective operations.

Code source:
https://github.com/aliciayuting/CS4414Demo.git

31

https://github.com/aliciayuting/CS4414Demo.git

Sharing data among threads ---race condition

• Example: Concurrent increments of a shared integer variable.

• Each thread shares an integer called count initialized to 0,

increments it 1 million times concurrently without any

synchronization

Code source:
https://github.com/aliciayuting/CS4414Demo.git

32

https://github.com/aliciayuting/CS4414Demo.git

num = 0

Read the value
Oh! I see
num=0.

Thread 1. Write back 1.

Oh! I see
num=0.

Thread 2. Write back 1.

Oh! I see
num=1.

Thread 3. Write back 2.

num = 2

33

Example: Concurrent increments of a shared integer variable

1

2

4

5

6

Write back the value
3

Concurrent reads, before

the previous thread write

back, caused the out-of-

order inconsistent results.

std::atomic

34

• A template that defines an atomic type.

template< class T >

struct atomic;
(1) (since C++11)

template< class U >

struct atomic<U*>;
(2) (since C++11)

template< class U >

struct atomic<std::shared_ptr<U>>;
(3) (since C++20)

template< class U >

struct atomic<std::weak_ptr<U>>;

(4) (since C++20)

https://en.cppreference.com/w/cpp/atomic/atomic

*
(more at

the end of
recitation if
have time)

https://en.cppreference.com/w/cpp/atomic/atomic

Atomic member functions

• Atomic type: std::atomic<type>

• Constructor std::atomic<bool> x(true); std::atomic<uint32_t> y(0);

• store() x.store(false); y.store(1, std::memory_order_relaxed);

35
https://en.cppreference.com/w/cpp/atomic/atomic

• load() bool z = x.load();

• operator= y = 2;

• operator+=, operator -= y += 1; y.fetch_add(1); (since C++20)

• operator++, operator-- y ++;

https://en.cppreference.com/w/cpp/atomic/atomic

Atomic member functions

• Atomic type: std::atomic<type>

• Constructor

• store()

36
https://en.cppreference.com/w/cpp/atomic/atomic

• load()

• operator=

• operator+=, operator -=

• operator++, operator--

Will std::atomic solve
all the multi-threading

synchronization
problem?

Only for specific types.
• Full specializations:
Character types, Standard signed
integer types, Standard unsigned
integer types, Integral types …
• Partial specializations:
All pointer types

https://en.cppreference.com/w/cpp/atomic/atomic

std::vector

• Does std::vector<T> guarantee thread-safety?

• What about std::atomic<std::vector<T>>? Is this thread safe?

37

Not necessarily

Not necessarily

Multithreads’ data sharing with std::vector

• When is std::vector thread-safe?

• Each thread has its own instance of std::vector (no concurrency)

• Read-only access

• When is std::vector not thread-safe?

• Simultaneous Read and Write

• Concurrent modification

• Reallocation access on reallocation or modification

38

Read-only-access of std::vector

39

int main() {
 std::vector<double> vec(100, 1.00);
 double t1_sum;
 double t2_sum;
 std::thread t1(read_vector,std::ref(vec), 1, std::ref(t1_sum));
 std::thread t2(read_vector,std::ref(vec), 2, std::ref(t2_sum));
 t1.join();
 t2.join();
 std::cout << "t1_sum="<< t1_sum << ",t2_sum=" << t2_sum;
…}

void read_vector(const std::vector<double>& vec, int thread_id, double& sum) {
 for (const auto& value : vec) {
 sum += value;
}} // Each thread reads the vector and accumulates the sum

Thread safe, because only
concurrent reads

Simultaneous read and write

40

0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10 11.11 12.12 13.13 14.14 15.15

thread t0 thread t1

vect[6] = 100.0; double x = vect[6];

Race
condition

Multithreading

• Threads management

• Launching threads

• Threads completion

• Synchronization

• Race condition

• Atomic

• Mutex

• Locks

Recap Mutex and Lock in C++ ---std::mutex::lock(), unlock()

int global_num = 0;
std::mutex globalMutex;

void incre(int num){
 globalMutex.lock();
 global_num = global_num + 1;
 globalMutex.unlock();
}

int main(){
 std::thread t1(incre, 10);
 std::thread t2(incre, 10);
 t1.join();
 t2.join();
}

46

Now, what will
happen, if I forget to
call mutex.unlock()?

RAII (Resource Acquisition is initialization)

// problem #1
{
 int *arr = new int[10];
}

// problem #3
Std::mutex globalMutex;
Void func() {
 globalMutex.lock();
}

// problem #2
{
 std::thread t1([] () {
 // do some operations
 });
}

// arr goes out of scope but we didn’t delete it, we now have a memory leak

// if we never unlocked the mutex(or exception occurred before unlock),
it will cause a deadlock when other thread tries to acquire this lock

// thread t1 is created but not joined, if it goes out of scope, std::terminate is
called, this implementation doesn’t properly handle the thread’s life cycle

47

Mutex and RAII locks

• std::unique_lock

• std::scoped_lock

• std::shared_lock

std::mutex my_mutex;

{

 std::unique_lock<std::mutex> lck(my_mutex);

 … …

}

{

 std::unique_lock<std::mutex> lck(my_mutex);

 … …

}

std::shared_mutex shared_mutex;

{

 std::shared_lock<std::mutex> lck(shared_mutex);

 … …

}

48

• A unique lock is an object that manages a mutex object with unique ownership in both

states: locked and unlocked.

• RAII: When creating a local variable of type std::unique_lock passing the mutex as

parameter.

• On construction, the object acquires a mutex object, for whose locking and unlocking

operations becomes responsible.

• This class guarantees an unlocked status on destruction (even if not called explicitly).

• Features:

• Deferred locking, Timeout locks, adoption of mutexes, movable(transfer of ownership)

Locking ---unique_lock

49

Locking ---scoped_lock

• Scoped_lock: a mutex wrapper which obtains access to (locks) the provided mutex, and ensures

it is unlocked when the scoped lock goes out of scope

int global_num = 0;
std::mutex globalMutex;

void incre(int num){
 {
 std::scoped_lock s_lock(globalMutex);
 global_num = global_num + 1;
 }
 global_num = global_num + 1;
 …
}

1
2
3
4
5
6
7
8
9
10
11
12

50

• std::shared_lock allows for shared ownership of mutexes.

Locking ---shared_lock

std::shared_mutex mtx;

int global_val;

void print_val (int n, char c) {

 std::shared_lock<std::shared_mutex > lck (mtx);

 std::cout << global_val << std::endl;

 }

int main () {

 std::thread th1 (print_val);

std::thread th2 (print_val);

th1.join();

th2.join(); 51

RAII

// problem #1’s fix
{
 std::unique_ptr<int[]> arr(new int[10]);
…..}

// problem #3’s fix
Std::mutex globalMutex;
Void func() {
 std::unique_lock<std::mutex> lock(globalMutex);
….
}

fixes

52

// problem #2’s fix
{
 std::thread t1([] () {
 // do some operations});
 t1.join();
}

RW lock

53

RW lock simple implementation

std::shared_mutex two level of access:

- exclusive: If one thread has acquired the exclusive lock, no other threads can acquire the lock (including the shared).

- shared: If one thread has acquired the shared lock, no other thread can acquire the exclusive lock, but can acquire the shared lock .

std::shared_mutex mutex_;

int value_ = 0;

unsigned int get() const
 {

 std::shared_lock lock(mutex_);
 return value_;
 }

 void increment()
 {

 std::unique_lock lock(mutex_);
 ++value_;
 } 54

// Multiple threads/readers can read the counter's value at the
same time.

// Only one thread/writer can increment/write the
counter's value.

// Global variables

RW lock simple implementation

std::shared_mutex mutex_;
int value_ = 0;

unsigned int get() const
 {
 std::shared_lock lock(mutex_);
 return value_;
 }

 void increment()
 {
 std::unique_lock lock(mutex_);
 ++value_;
 }

55

int main() {
 std::thread reader_thread([]() {
 unsigned int val = get();
 std::cout << val << '\n’;
 });
 std::thread writer_thread([]() {
 increment();
 });
 reader_thread.join();
 writer_thread.join();
…}

1. true/false

When using the std::scoped_lock type to create a lock, you do need to
specify a mutex object but do not need to give the std::scoped_lock a
variable name, because you would never perform any operations on the
object.

It is not necessary to use a std::mutex to protect shared objects marked as
“const”.

The readers and writers pattern can be used to safely protect an STL object
like a std::list or std::map that will be read by some threads and written by
other threads.

56

Practice prelim

1. true/false

When using the std::scoped_lock type to create a lock, you do need to
specify a mutex object but do not need to give the std::scoped_lock a
variable name, because you would never perform any operations on the
object.

It is not necessary to use a std::mutex to protect shared objects marked as
“const”.

The readers and writers pattern can be used to safely protect an STL object
like a std::list or std::map that will be read by some threads and written by
other threads.

57

Practice prelim

F

T

T
Multiple threads could read at the same
time, but writer requires exclusive access

const promises no
changes to the variable

Coordination

• Lecture 18, 19

Cornell CS4414 - Spring 2023 59

Producer thread(s) Consumer thread(s)

Bounded Buffer

Producer – consumer Pattern

Cornell CS4414 - Spring 2023 60

CCL Pattern (All-Reduce and Map-Reduce)

It assumes that there is a large (key,value) data set divided so that

worker k has the k’th shard of the data set.

• For example, with integer keys, perhaps (key % n) == k

• With arbitrary objects, you can use the built-in C++ “hash” method.

Cornell CS4414 - Spring 2023 61

Leader
Worker threads

Shard A Shard B Shard C

All-Reduce pattern: Map (first step) example

Do word-count(wc)

word-count(wc)

• The leader maps some task over the n workers.

• Each worker applies the requested function to the data in its shard.

word-count(wc) word-count(wc)

Cornell CS4414 - Spring 2023 62

Leader

Shard A Shard B Shard C

Result A Result B Result C

All-Reduce pattern: Map (first step)

• When finished, each worker will have a list of new (key,value) pairs as
its share of the result.

{
“apple”: 1,
“book”:10,
…}

{
“apple”:2,
“car”: 1,
…}

{
“book”: 1,
“car”:3,
…}

Worker threads

word-count(wc) word-count(wc) word-count(wc)

Cornell CS4414 - Spring 2023 63

Leader Worker threads

Shard A Shard B Shard C

Partial Result A Partial Result B Partial Result C

All-Reduce pattern: Shuffle

Cornell CS4414 - Spring 2023 64

Leader Worker threads

Shard A Shard B Shard C

Partial Result A

Partial Result B

Partial Result C

Partial Result A

Partial Result B

Partial Result C

Partial Result A

Partial Result B

Partial Result C

All-Reduce pattern: Shuffle

Cornell CS4414 - Spring 2023 67

Leader Worker threads

Shard A Shard B Shard C

Reduced Result
Reduced Result

Reduced Result

With AllReduce, at the end of the pattern all participants

have identical “replicas” of the reduced result. The

map step is usually the slow one, and reducing is usually
fast

All-Reduce pattern: Shuffle

Cornell CS4414 - Spring 2023 68

Map-reduce pattern

• With Map-Reduce, each worker ends up with a distinct share of the
results. Data is “spread out” at the start and at the end. Useful if the
final result would be too big to hold on a single computer.

• Instead of a set of all-to-all broadcasts, MapReduce uses point-to-point
messages: worker1 sends data intended for worker2 only to worker2,
etc.

2. true/false

MapReduce is valuable if a data set is so large that it can’t fit on any
one computer and must be split into pieces (“sharded”) and spread
over many computers.

Unlike parallel computing, a MapReduce computation is sequential.

Every shard will be processed but the computations occur one by one,

with each worker running in turn in an order decided by the leader.

71

Practice prelim

F

T

What have we learnt in this
class?

System programming

73

• Modern systems: various types of resources (memory, CPU cycles, files...), OS,

file systems, …

• How to realize the best performance of the systems, via the hardware, the

compiler, the linker, etc; performance analysis, and profiling.

• Coordination in a systems: multiple threads, multiple processes, perhaps

multiple computers, perhaps even attached hardware accelerators that are

themselves programmable.
Cornell CS4414 - Fall 2024

74

How to write good system program in C++

1. clean and correct code

2. Develop efficient system

What is C++?

75

A federation of related languages, with four primary sublanguages

• C: C++ is based on C, while offering approaches superior to C. Blocks,

statements, processor, built-in data types, arrays, pointers, etc., all come

from C

• Object-Oriented C++: “C with Classes”, classes including constructor,

destructors, inheritance, virtual functions, etc.

• Template C++: generic programming language. Gives a template, define

rules and pattern of computation, to be used across different classed.

• STL(standard template library): a special template library with conventions

regarding containers, iterators, algorithms, and function objects

Write clean and correct code

76

• The basics: C++ types, variable …

• Classes and functions

• Memory management in C++, RAII principle

• Smart pointers in C++

• C++ templates

• Standard containers – std::vector<T>, std::map<K,V>

Develop efficient system

77

• Cmake for large system compilation management, gprof for

program profiling

• Make efficient use of hardware

• Hardware parallelism

• Multithreading and synchronization

	Slide 1: CS4414 Recitation 13 Prelim2 Review
	Slide 2: Logistics
	Slide 3: C++ Compile-time and runtime concepts
	Slide 4
	Slide 5
	Slide 7: constexpr
	Slide 8: constexpr
	Slide 11
	Slide 12
	Slide 13: C++ Compile-time and runtime concepts
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 24: Multithreading
	Slide 25: Multithreading
	Slide 26: Concurrency
	Slide 27: Launching thread (via std::thread)
	Slide 28: Launching thread --- function pointer
	Slide 29: Joining threads with std::thread
	Slide 30: Multithreading
	Slide 31: Sharing data among threads ---race condition
	Slide 32: Sharing data among threads ---race condition
	Slide 33: Example: Concurrent increments of a shared integer variable
	Slide 34: std::atomic
	Slide 35: Atomic member functions
	Slide 36: Atomic member functions
	Slide 37: std::vector
	Slide 38: Multithreads’ data sharing with std::vector
	Slide 39: Read-only-access of std::vector
	Slide 40: Simultaneous read and write
	Slide 45: Multithreading
	Slide 46: Recap Mutex and Lock in C++ ---std::mutex::lock(), unlock()
	Slide 47: RAII (Resource Acquisition is initialization)
	Slide 48: Mutex and RAII locks
	Slide 49: Locking ---unique_lock
	Slide 50: Locking ---scoped_lock
	Slide 51: Locking ---shared_lock
	Slide 52: RAII
	Slide 53: RW lock
	Slide 54: RW lock simple implementation
	Slide 55: RW lock simple implementation
	Slide 56
	Slide 57
	Slide 58: Coordination
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 67
	Slide 68
	Slide 71
	Slide 72: What have we learnt in this class?
	Slide 73: System programming
	Slide 74
	Slide 75: What is C++?
	Slide 76: Write clean and correct code
	Slide 77: Develop efficient system

