
CS4414 Recitation 11
Multithreading and Synchronization III

11/08/2024

Alicia Yang

1

Multithreading

• Threads management

• Launching threads

• Threads completion

• Synchronization

• Race condition

• Atomic

• Mutex

• Locks

• Condition variable

Semantics

Code
example

2

Recap

3

Locking ---protecting data with mutex

• How does mutex work?

• Before accessing a shared data structure, you lock the mutex associated with that

data

• When finished accessing the data structure, you unlock the mutex.

4

std::mutex

exclusive, non-recursive ownership

• A thread owns the mutex from the time when it call lock() until it calls

unlock()

• The Thread Library then ensures that once one thread has locked a

specific mutex, all other threads that try to lock the same mutex have to

wait until the thread that successfully locked the mutex unlocks it.

5
https://en.cppreference.com/w/cpp/thread/mutex

https://en.cppreference.com/w/cpp/thread/mutex

Locking ---std::mutex::lock(), unlock()

demo

int global_num = 0;
std::mutex globalMutex;

void incre(int num){
 globalMutex.lock();
 global_num = global_num + 1;
 globalMutex.unlock();
}

int main(){
 std::thread threadA(incre, 10);
 std::thread threadB(incre, 10);
 threadA.join();
 threadB.join();
…}

6

Only one
thread could

enter line 5 at
a time

1
2

3
4
5
6
7

8
9
10
11
12

• A Mutex is a lock that we set before using a shared resource and release after using it.

• When the lock is set by one thread, then no other thread can access the locked region

of code.

• Mutex lock will only be released by the thread who locked it.

Mutex and Lock in C++

Thread A owns the
mutex object

Thread B owns
the mutex object

globalMutex

7

Locking ---std::mutex::lock(), unlock()

demo

int global_num = 0;
std::mutex globalMutex;

void incre(int num){
 globalMutex.lock();
 global_num = global_num + 1;
 globalMutex.unlock();
}

int main(){
 std::thread threadA(incre, 10);
 std::thread threadB(incre, 10);
 threadA.join();
 threadB.join();
}

8

Now, what will
happen, if I forget to
call mutex.unlock()?

• A Mutex is a lock that we set before using a shared resource and release after using it.

• When the lock is set by one thread, then no other thread can access the locked region

of code.

• Mutex lock will only be released by the thread who locked it.

Mutex and Lock in C++

Thread B is unable
to acquire the lock
if Thread A doesn’t
unlock it.

globalMutex

9

• A Mutex is a lock that we set before using a shared resource and release after

using it.

• When the lock is set by one thread, then no other thread can access the locked

region of code.

• Mutex lock could only be released by the thread who locked it.

Mutex and Lock in C++

10

Locking ---std::mutex::lock(), unlock()

• std::mutex::lock(), unlock()

• It is not recommended practice to call lock(), unlock() directly,

because this means that you have to remember to call unlock() on

every code path out of a function that called lock(), including those

due to exceptions.

11

RAII (Resource Acquisition is initialization) re-visit

• Resource acquisition must succeed for initialization to succeed:

• In RAII, holding a resource is a class invariant is tied to object lifetime: resource

allocation is done during object creation, by the constructor; while resource

deallocation is done during object destruction, by the destructor.

• If there are no object leaks, there are no resource leaks.

• The resource is guaranteed to be held between when initialization finishes and

finalization starts, and to be held only when the object is alive.

12

RAII (Resource Acquisition is initialization)

// problem #1
{
 int *arr = new int[10];
}

// problem #3
Std::mutex globalMutex;
Void func() {
 globalMutex.lock();
}

// problem #2
{
 std::thread t1([] () {
 // do some operations
 });
}

// arr goes out of scope but we didn’t delete it, we now have a memory leak

// if we never unlocked the mutex(or exception occurred before unlock),
it will cause a deadlock when other thread tries to acquire this lock

// thread t1 is created but not joined, if it goes out of scope, std::terminate is
called, this implementation doesn’t properly handle the thread’s life cycle

13

RAII (Resource Acquisition is initialization)

// problem #1’s fix
{
 int *arr = new int[10];
 delete[] arr;
}

// problem #3’s fix
Std::mutex globalMutex;
Void func() {
 globalMutex.lock(); ….
 globalMutex.unlock();
}

// problem #2’s fix
{
 std::thread t1([] () {
 // do some operations
 });
 t1.join();
}

14

RAII (Resource Acquisition is initialization)

• RAII

• When acquire resources in a constructor, also need to release them in the corresponding

destructor

• Resources:

• Heap memory,

• files,

• sockets,

• mutexes

15

Locking ---std::mutex::lock(), unlock()

demo

int global_num = 0;
std::mutex globalMutex;

void incre(int num){
 globalMutex.lock();
 global_num = global_num + 1;
 globalMutex.unlock();
}

int main(){
 std::thread threadA(incre, 10);
 std::thread threadB(incre, 10);
 threadA.join();
 threadB.join();
}

16

Is there a better ways to
manage the mutex that

can automatically unlock
it when not used?

Mutex and RAII locks

• std::unique_lock

• std::scoped_lock

• std::shared_lock

std::mutex my_mutex;

{

 std::unique_lock<std::mutex> lck(my_mutex);

 … …

}

{

 std::unique_lock<std::mutex> lck(my_mutex);

 … …

}

std::shared_mutex shared_mutex;

{

 std::shared_lock<std::mutex> lck(shared_mutex);

 … …

}

17

• A unique lock is an object that manages a mutex object with unique ownership in both

states: locked and unlocked.

• RAII: When creating a local variable of type std::unique_lock passing the mutex as

parameter.

• On construction, the object acquires a mutex object, for whose locking and unlocking

operations becomes responsible.

• This class guarantees an unlocked status on destruction (even if not called explicitly).

• Features:

• Deferred locking, Timeout locks, adoption of mutexes, movable(transfer of ownership)

Locking ---unique_lock

18

Locking ---unique_lock

19

int global_num = 0;
std::mutex globalMutex;

void incre(int num){
 std::unique_lock<std::mutex> u_lock(globalMutex);
 global_num = global_num + 1;
 …
}

int main(){
 std::thread t1(incre, 1);
 std::thread t2(incre, 3);
 t1.join();
 t2.join();
…}

Only one
thread could
enter line 5-7

at a time

1
2

3
4
5
6
7

8
9
10
11
12

int main() {

 std::thread t1(conditional_locking, true);

 std::thread t2(conditional_locking, false);

 t1.join();

 t2.join();

 return 0;

}

std::mutex mtx;

void conditional_locking(bool should_lock) {

 std::unique_lock<std::mutex> lock(mtx, std::defer_lock);

if (should_lock) {

 lock.lock();

 std::cout << "Lock acquired." << std::endl;

 } else {

 std::cout << "Lock not acquired." << std::endl;

 }

}

Locking ---unique_lock

Unique_lock feature: Deferred locking

20

// Create lock but do not acquire it

// Conditionally acquire the lock

Locking ---scoped_lock

• Scoped_lock: a mutex wrapper which obtains access to (locks) the provided mutex, and ensures

it is unlocked when the scoped lock goes out of scope

int global_num = 0;
std::mutex globalMutex;

void incre(int num){
 {
 std::scoped_lock s_lock(globalMutex);
 global_num = global_num + 1;
 }
 global_num = global_num + 1;
 …
}

1
2
3
4
5
6
7
8
9
10
11
12

21

• std::shared_lock allows for shared ownership of mutexes.

Locking ---shared_lock

std::shared_mutex mtx;

int global_val;

void print_val (int n, char c) {

 std::shared_lock<std::shared_mutex > lck (mtx);

 std::cout << global_val << std::endl;

 }

int main () {

 std::thread th1 (print_val);

std::thread th2 (print_val);

th1.join();

th2.join(); 22

RAII (Resource Acquisition is initialization)

// problem #1

{

 int *arr = new int[10];

}

// problem #3

Std::mutex globalMutex;

Void func() {

 globalMutex.lock();

}

// arr goes out of scope but we didn’t delete it, we now have a memory leak

// if we never unlocked the mutex(or exception occurred before unlock),
it will cause a deadlock when other thread tries to acquire this lock 23

RAII

// problem #1’s fix

{

 std::unique_ptr<int[]> arr(new int[10]);

…..

}

// problem #3’s fix

Std::mutex globalMutex;

Void func() {

 std::unique_lock<std::mutex> lock(globalMutex);

….

}

Better fixes

24

Exercise from last time --- RW lock

• Reader-writer lock

• Single writer or multiple reader ownership

25

Exercise from last time --- Why RW lock?

26

Exercise from last time --- RW lock

• Reader-writer lock

• Single writer or multiple reader ownership

• Expect higher concurrency when primarily reading

• std::shared_mutex

27

demo

What should I do if I want to prioritize the write?

28

Thread1 ResourceThread3Thread2

Read

Response

Response

Write

Multithreading

• Threads management

• Launching threads

• Threads completion

• Synchronization

• Race condition

• Atomic

• Mutex

• Locks

• Condition variables

• Futures and promises(async)

29

Condition Variable

Suppose a thread needs to wait for some other threads to do
something for it, how would you encode this into the program?

30

Condition Variable

Mutex lockThread 1.

Thread 2.

Thread 3.

Thread 4.

• Two main purpose of condition variable

• Notify other threads

• Waiting for some conditions that other thread can change

Please wait here
until the

condition(…) is
true

T1

T3

T4
31

1. Need mutex to use condition variable

Two roles

• Waiting threads: first acquire the lock, then wait() if condition not satisfied

• Notifying threads: thread make the changes that can allow other thread’s wait

condition to true and move on.

Condition Variable

32

Condition Variable --- std::condition_variable

class condition_variable; (since C++11)

https://en.cppreference.com/w/cpp/thread/condition_variable

std::condition_variable cv;

Declare a
condition_variable

object

33

https://en.cppreference.com/w/cpp/thread/condition_variable

1. Need mutex to use condition variable

2. Condition Variable allows running threads to wait on some conditions and once the

threads wake up

• Atomically acquire the lock and check the condition

• If the condition is satisfied, then it will continue the program

• If not satisfied, it waits by releasing the lock, and goes back to waiting

Condition Variable --- std::condition_variable::wait

34

Two types of wait functions for condition variable

std::mutex mtx;

std::condition_variable cv;

int main(){

 std::unique_lock<std::mutex> lck(mtx);

 cv.wait(lck);

 ……

}

std::mutex mtx;

std::condition_variable cv;

int current_balance = 0;

int main() {

 std::unique_lock<std::mutex> lck(mtx);

 cv.wait(lck, [] { return current_balance != 0; });

 ……

}

void wait(std::unique_lock<std::mutex>& lock); (1) (since C++11)

template< class Predicate >

void wait(std::unique_lock<std::mutex>& lock, Predicate pred);
(2) (since C++11)

https://en.cppreference.com/w/cpp/thread/condition_variable/wait

Automatically
calls lck.unlock()
and block *this

Equivalent to
while (!pred())
 wait(lock);

 Unconditional wait(lock) predicate wait(lock, pred)

35

http://en.cppreference.com/w/cpp/thread/unique_lock
http://en.cppreference.com/w/cpp/thread/mutex
http://en.cppreference.com/w/cpp/thread/unique_lock
http://en.cppreference.com/w/cpp/thread/mutex
https://en.cppreference.com/w/cpp/thread/condition_variable/wait

Two types of wait functions for condition variable

To avoid the affect of spurious wake ups, always use predicate wait() !

std::mutex mtx;

std::condition_variable cv;

{

 std::unique_lock<std::mutex> lck(mtx);

 cv.wait(lck);

 ……

}

std::mutex mtx;

std::condition_variable cv;

int current_balance = 0;

int main() {

 std::unique_lock<std::mutex> lck(mtx);

 cv.wait(lck, [] { return current_balance != 0; });

 ……

}

The thread will be unblocked
when

notify_all() or notify_one() is
executed.

 Unconditional wait(lock) predicate wait(lock, pred)

36

Condition Variable --- wait

• When a thread calls the member function wait() on a condition variable

• The execution of the current thread (which currently has the locked’s mutex) is

blocked until notified.

• When the thread is blocked, the function automatically calls unlock(), allowing other

threads to acquire the lock and continue.

• The wait function performs three atomic operations:

• The initial unlocking of mutex and simultaneous entry into the waiting state.

• The unblocking of the waiting state.

• The locking of mutex before returning.

37

1. Need mutex to use condition variable

2. Condition Variable allows running threads to wait on some conditions

3. The waiting thread(s) is notified by working thread using:

• notify_one();

• notify_all();

Condition Variable --- notify

38

• The waiting thread is notified by working thread using:

• notify_one():

• Unblocks one of the threads currently waiting for this condition.

• If no threads are waiting, the function does nothing.

• If more than one, it is unspecified which of the threads is selected.

T1

T2

working

waiting

Notify_one()

Condition variable
C

T3

waiting
T4

Condition Variable --- notify

39

• The waiting thread is notified by working thread using:

• notify_all():

• Unblocks all threads currently waiting for this condition.

T1

T2

working

waiting

notify

Condition variable
C

T3

waiting
T4

Condition Variable --- notify

40

1. Each thread first acquire the mutex lock

2. Then check the condition in wait()

3. Waiting thread(s) is notified by working thread

4. When thread(s) waiting at the condition variable gets notified,

• it first try to acquire the lock of mutex

• Check the condition, the thread will not go further until the condition is true:

• if it is true, then go further;

• if it is not, it will again wait for the condition variable

Condition Variable

Demo
41

What should I do if I want to prioritize the write?

42

Thread1 ResourceThread3Thread2

Read

Response

Response

Write

Exercise from last time --- RW lock

• Reader-writer lock

• Single writer or multiple reader ownership

• Expect higher concurrency when primarily reading

• std::shared_mutex

• Read/write preference

43

demo

Multithreading

• Threads management

• Launching threads

• Threads completion

• Synchronization

• Race condition

• Atomic

• Mutex

• Locks

• Condition variables

• Futures and promises(async)

44

Promises and futures

• What are promises and futures?

• How to use them in C++?

45

• Why future and promise?

• A way to pass values between threads without synchronization, such as locking a mutex.

• When to use?

• When some operations produce results take some time, or do not need to be executed in a

particular order

• Reading or writing data:

• Reading large files from disks

• Web service calls over HTTP

• Reading data from a Socket

• Database queries

• Responsive user interface

• Distributed systems

• Run a program(function) asynchronously

Futures and Promises

46

• Class template object: a facility to store a value or an exception that is later acquired

asynchronously via a std::future object

• Promise object has an associated future object, which is automatically instantiated

when a promise is created.

• The constructed future will only be valid when the promise fills in the data

• Promise object guarantees that the future object will return the result when the

set_value function is called on it by the computing thread

Promises

std::promise<T> my_promise ;

std::future<T> my_future = my_promise.get_future() ;

47

• Class template object: provides a mechanism to access the result of asynchronous

operations

• Future is a read-only object containing data

• The data may not be available or computed in the present

• The data is promised to be available in the future

• get() method is the main purpose of the future object

• Calling get() will block the current thread until the data is available

• get() will either returns a value or throws an exception.

Futures

std::future<T> my_future = …..;

48

1. Construct a promise object

2. Get the future object from the promise

3. Move the promise to another thread/function.

4. When the function has completed

1. Place the return value or exception in the

promise

2. The future becomes valid or available

5. Call get() on the future object to retrieve the

data

How do futures and promises work?

Demo

std::promise<int> pObj;

std::future<int> fObj=pObj.get_future();

std::thread thread_A(fun,std::move(pObj));

pObj.set_value(42);

fObj.get()

49

• Encapsulate the two sets of functionalities

• Promise: used by the function to compute the value, and store the

value/exception in the future.

 --- set_value() method

• Future: used to retrieve the value being computed

 --- get() method

• Works well when different threads have different tasks

Why do we separate the future and promise classes?

50

• Abstraction of calling a function in a different thread

• The async function will be executed in a separate thread. Main program does

not wait for the async function to complete

• std::async automatically sets up the Future/Promise

• Return the future object right away

• At some pointer later when the function complete, the returned future will be

valid

Async

51

Async

#include <iostream>
#include <future>
bool is_prime(int x)
{
 … …
 Return true;
}

int main()
{
 std::future<bool> fut = std::async(is_prime,321);

 bool ret = fut.get(); // waits for is_prime to return

 return 0;
}

52

• Problem:

• No way to notify the other thread when finished

• Get() method is blocking

• Non-blocking

• Alternative 1. use wait_for(std::chrono::second(0)) on the future

• Alternative 2. use concurrency extension in c++20

Futures and promises

auto f = std::async(std::launch::async, func);
while (!f.is_ready()) {
 // … …
}
auto result = f.get();

std::future_status status;
while (status != std::future_status::ready) {
 status = future.wait_for(std::chrono::seconds(0));
 if (status == std::future_status::ready)
 {
 std::cout << "ready!\n";
 }
 } 53

Where to find the resources?

• RW Lock: https://www.youtube.com/watch?v=KJS3ikoiLso

• Condition Variable:

• https://www.cplusplus.com/reference/condition_variable/condition_variable/wait/

• Future and promise:

• https://www.cplusplus.com/reference/future/async/

• https://en.cppreference.com/w/cpp/thread/future/wait_for

54

https://www.youtube.com/watch?v=KJS3ikoiLso
https://en.cppreference.com/w/cpp/thread/future/wait_for
https://en.cppreference.com/w/cpp/thread/future/wait_for

	Slide 1: CS4414 Recitation 11 Multithreading and Synchronization III
	Slide 2: Multithreading
	Slide 3: Recap
	Slide 4: Locking ---protecting data with mutex
	Slide 5: std::mutex
	Slide 6: Locking ---std::mutex::lock(), unlock()
	Slide 7
	Slide 8: Locking ---std::mutex::lock(), unlock()
	Slide 9
	Slide 10
	Slide 11: Locking ---std::mutex::lock(), unlock()
	Slide 12: RAII (Resource Acquisition is initialization) re-visit
	Slide 13: RAII (Resource Acquisition is initialization)
	Slide 14: RAII (Resource Acquisition is initialization)
	Slide 15: RAII (Resource Acquisition is initialization)
	Slide 16: Locking ---std::mutex::lock(), unlock()
	Slide 17: Mutex and RAII locks
	Slide 18: Locking ---unique_lock
	Slide 19
	Slide 20
	Slide 21: Locking ---scoped_lock
	Slide 22: Locking ---shared_lock
	Slide 23: RAII (Resource Acquisition is initialization)
	Slide 24: RAII
	Slide 25: Exercise from last time --- RW lock
	Slide 26: Exercise from last time --- Why RW lock?
	Slide 27: Exercise from last time --- RW lock
	Slide 28: What should I do if I want to prioritize the write?
	Slide 29: Multithreading
	Slide 30: Condition Variable
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: What should I do if I want to prioritize the write?
	Slide 43: Exercise from last time --- RW lock
	Slide 44: Multithreading
	Slide 45: Promises and futures
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Where to find the resources?

