CS441 4 Recitation 10

multi-threading |l

11/01/2024
Alicia Yang

Winners of HW 3 competition

Code that process .dat files in real-time:
1*" place: Jeffrey Qian

2"d place: Arjun Saini

3" place: Nam Anh Dang

4™ place: Tianyi Zhang

Special prices (code that uses cache.dat between runs)

Peter Engel, Tami Takada, Reevu Adakroy

Recap

* Multithreading

* Race condition

Multi Threaded

Single Thread

| Concurrency

Stack

Heap

Heap

" ST T peaayy T
]
-l
&
('

W

o

=]

L
-
w
S
v

T T peaayy T

£
Q
k%
g
=L
w
3
v

@

=]

D lllllllllllllllllllllllllllll
" o peaJyL
T
b
L
&
('

N

awi |

Process

https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

Shc:ring CICITCI among ’rhrec:ds ---race condition

* Race condition:

* The situation where the outcome depends on the relative

ordering of execution of operations on two or more threads;

the threads race to perform their respective operations.

Code source: >
httos: //sithub.com/aliciavutine/CS4414Demo.git

https://github.com/aliciayuting/CS4414Demo.git

Sharing dCITCI among ’rhreads ---race condition

* Example: Concurrent increments of a shared integer variable.

* Each thread shares an integer called count initialized to O,

increments it 1 million times concurrently without any

synchronization
umberof thread Fralave
1 1000000

2 1059696
3 1155035
4 1369165

Code source: 6

httos: //sithub.com/aliciavutine/CS4414Demo.git

https://github.com/aliciayuting/CS4414Demo.git

Example: Concurrent increments of a shared integer variable

1. Read the value void Increment(){

number ++;
}

number++;

Thread 0

3. Write back the
value

Example: Concurrent increments of a shared integer variable

OhI | see
Read the value \ num=0.

Thread 1. Write back 1.

num=0

I lly wh
deally what we want Ohl | see
@ \ num=1.

erte back the value

Thread 2. Write back 2.

Oh! | see
num=2.

o O
Thread 3. Write back 3.

Example: Concurrent increments of a shared integer variable

Oh| | see
Read the value U= 0
Write bac Thread 1. Write back 1.

Ideally what we want l y Oh! | see
&3 Will it always be m=1,

in this 2ad 2. Write back 2.

sequence?

Oh! | see
num=2.

o O

Thread 3. Write back 3.

Example: Concurrent increments of a shared integer variable

OhI | see
Read the value R 0
lue

T %
e va

®

Concurrent reads, before

Thread 1. Write back 1.

Oh! | see
A num=0.

Thread 2. Write back 1.

Oh! | see
num=1.

the previous thread write
back, caused the out-of- 0O

order inconsistent results. Thread 3. Write back 2.

10

Thread Safety

* A function, a piece of code, or an object is thread-safe when it can
be invoked or accessed concurrently by multiple threads without

causing unexpected behavior, race conditions, or data corruption.

Thread safe

* Entities in C++ standard library and their thread-safety guarantees

12

Thread safe?

* |s integer type inherently thread-safe?

* No, as we showed just now

How to make it
thread-safe?

13

std::atomic

* A template that defines an atomic type.

' template< class T >
strict atomic; (1) (since C++11)
template< class U > ,
struct atomic<U*>; 2) (since C++11)
template< class U >
* b . (3) (since C++20)
(moreat | Struct atomic<std::shared ptr<U>>;
th d of .
rec?taezonoif template< class U > (4) (since C++20)
have time) | struct atomic<std::weak ptr<U>>;

https://en.cppreference.com/w/cpp/atomic/atomic **

https://en.cppreference.com/w/cpp/atomic/atomic

Atomic

* An atomic operation is an indivisible operation.

* The operation is either done or not done. Such an operation would never be half-

done from any thread in the system.

15

Data race condition: non-atomic access pattern

void Increment(){

1. Read the value number ++:
}

2. Increment number+X\

Let me perform some S WdEERLY
instruction on number
during this operation
(between step1-3)
concurrently

3. Write back the valué

Thread 1

16

Data race condition: non-atomic access pattern

—¢ COMPILER . L . : -
= EXPLORER 7dd..~ More~ Support diversity in C++ with #include <C++> = P's |ntel PC-ZmI Share ~ Policies @@~ Other-
C++ source #1 X O x| xB6-64 goe 11.2 (C++, Editor #1, Compiler #1) X O :
A~ @ +~ v £ » (3, 14) C++ - x86-64 gce 11.2 - & Compiler options... E
! :nt main() A~ ®©Output..~ Y Filter..~ B Libraries <= Add new...~ * Addtool...~
2 — 5
3 volatile hnt val = 0: 1 —
4 val ++; 2 Husk CUH
5 return val: 3 mov rbp, rsp
6 } 4 mov DWORD PTR [rbp-4], O
5 mov eax, DWORD PTR [rbp-4]
] add eax, 1
7 mov DWORD PTR [rbp-4], eax
8 mowv eax, DWORD PTR [rbp-4]
9 pop rbp
10 ret

std::thread t1([&val]() {
val++; Another concurrent thread t1

;i v

2% COMPILER
=s EXPLORER 799

Atomic access

~ More ~ Templates

C++ source #1 &

A~ BSavelload + Addnew..~ Wvim J©Cppinsights ® Quick-bench

1
2
3
4
5
6

#include <atomic>

int main() {

volatile @Fd::atomic<imy val = 0;

std::atomic guarantees one
thread to execute the
entire operation (val ++;),
during which no other
thread interfering or
interrupting

O | x86-64 gce 14.2 (Editor #1) & X

@ C++ ~ | x86-64 gcc 14.2

main:
push

o =] On N e W R

Sponsors .]ETBRAINS think-cell® Share ~ Policies)

* [@ Compileroptions...

A~ QR Output..~ WFilter..~ B Lbraries J/ Overrides + Addnew..~ ,* Addtool..~

rbp
rbp, rsp

rsp, 16
DWORD PTR [rbp

std::thread t1([&val]() {
val++;
b

Another concurrent thread t1

18

Atomic

* An atomic operation is an indivisible operation.

* std::atomic are implemented using hardware supports provided by modern CPU:

* Examples of atomic instructions:
* Compare-and-Swap (CAS)
* Load-Linked/Store-conditional (LL/SC)

* fetch_and_add (FAA)

* Different CPUs provide different sets of atomic instructions. The implementation of

std::atomic varies from architecture to architecture

Atomic member functions

* Atomic type: std::atomic<type>
* Constructor std::atomic<bool> x(true); std::atomic<uint32_t> y(0);
* store() x.store(false); y.store(1, std::memory_order_relaxed);

20
https://en.cppreference.com/w/cpp/atomic/atomic

https://en.cppreference.com/w/cpp/atomic/atomic

Memory_order

Accesses to atomic objects may establish inter-thread synchronization and order non-

atomic memory accesses as specified by std::memory_order

* memory_order:relaxed

// no synchronization or ordering constraints imposed on other reads or writes

* memory_order::consume
// no reads or writes in the current thread dependent on the value currently loaded can
be reordered before this load

* memory_order::acquire

// no reads or writes in the current thread can be reordered before this load.

More atomic member functions

* load() bool z = x.load();

* exchange() uint32_t m = y.exchange(100);

* operator= y = 2;

* operator+=, operator -= y +=1; y.fetch_add(1); (since C++20)
* operator++, operator-- y ++;

What about y =y + 1¢

22
https://en.cppreference.com/w/cpp/atomic/atomic

https://en.cppreference.com/w/cpp/atomic/atomic

More atomic member functions

load()

exchange()

* operator=

operator+=, operator -=

operator++, operator--

bool z = x.load();

uint32_t m = y.exchange(100);
Y = 2;

y +=1; y.fetch_add(1);

y ++;

WhCI"' CIbOU"' y — y +]2 When multithreading, leads to race condition,

because it involves multiple operations (read x,
+1 and then assignment operation)

23
https://en.cppreference.com/w/cpp/atomic/atomic

https://en.cppreference.com/w/cpp/atomic/atomic

Thread safe

* std::atomic

* stdushared_ptr

std::vector

* Does std::vector guarantee thread-safety?

26

Multithreads’ data sharing with std::vector

* When is std::vector thread-safe?

* Each thread has its own instance of std::vector (no concurrency)

* Read-only access

* When is std::vector not thread-safe?
* Simultaneous Read and Write
e Concurrent modification

* Reallocation access on reallocation or modification

27

Read-only-access of std::vector

void read_vector(const std::vector<double>& vec, int thread_id, double& sum) {
for (const auto& value : vec) {
sum += value;

1 // Each thread reads the vector and accumulates the sum

Thread safe, because only
int main() { concurrent reads

std::vector<double> vec(100, 1.00);

double t1_sum;

double t2_sum;

std::thread t1(read_vector,std::ref(vec), 1, std::ref(t1_sum));
std::thread t2(read_vector,std::ref(vec), 2, std::ref(t2_sum));
t1.join();

t2.join();

std::cout << "t1 _sum="<< t1l sum<<",t2 sum="<<t2 sum;

o}

Simultaneous read and write

1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 |/ 10.10 | 11.11 | 12.12 13.13 | 14.14 | 15.15

vect[6] = 100.0;

double x = vect|[6];

thread t0 thread t1

29

Simultaneous read and write

Concurrent Read+write
to the SAME element
is NOT thread-safe

0.0

1.1 2.2 3.3

4.4

5.5

vect[6] = 100.0;

6.6 7.7

8.8

9.9 |10.10 | 11.11| 12.12 | 13.13

14.14

15.15

ect[6];

x could be

6.6 or 100.0
after this.

thread t1

30

cfs s s this code
Concurrent modification ? thread-safe?

0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 |/ 10.10 | 11.11 | 12.12 13.13 | 14.14 | 15.15

void set_value(std::vector<double>& vec, size_t index, double value) {
vec[index] = value;

}

int main() {
std::vector<double>vec(16) ={0.0, 1.1, 2.2, };
std::thread t1(set_value, std::ref(vec), 5, 100.0);
std::thread t2(set_value, std::ref(vec), 6, 101.0);
tl.join();
t2.join();

o} 31

Concurrent modification

0.0

1.1

2.2

3.3

4.4

5.5

6.6

7.7

8.8

9.9

10.10

11.11

12.12

13.13

14.14

15.15

vect[5] = 100.0;

thread t0

vect[6] =101.0;

thread t1

32

Concurrent modification

\

Cache line

\

0.0

1.1

2.2

3.3

4.4

5.5

6.6

7.7

8.8

9.9

10.10

11.11

12.12

13.13

14.14

15.15

vect[6] = 100.0;

thread t0

vect[6] = 101.0;

thread t1

33

Concurrent modification

Cache line

\

At the risk of
false sharing

0.0

1.1

2.2

3.3

4.4

5.5

6.6

7.7

8.8

9.9

10.10

11.11

12.12

13.13 | 14.14 | 15.15

vect[6] = 100.0;

thread t0

vect[6] = 101.0;

It isn’t thread-safe, due to false sharing.
Each thread modifies a different element
(vec[5] and vec[6]), but they may share
the same cache line, and the
modifications cause cache invalidations.

thread t1

34

. . f) s this code
Concurrent access with reallocation
o thread-safe?

void add_elements(std::vector<int>& vec, int thread_id) {
for(inti=0;i<10; ++i) {
vec.push_back(i);
}

}

int main() {
std::vector<int> vec ={1, 2, 3};
std::thread t1(writer, std::ref(vec));
std::thread t2([&vec]() {
std::cout << "value: " << vec.back(); << std::endl;});

t1.join();
t2.join();
o}

35

How is std::vector allocated in memory

int main(){ main()

std::vector<int> vect= {1,2,3};

Suppose
size() = capacity() = 3

[

Recitation4]

—

std::vector<int>

vect °
int 1 g
int 2

Int 3

:

Stack

Heap

data

Code(Text)

20

How is std::vector allocated in memory

int main(){ main()
std::vector<int> vect= {1,2,3};

vect.push_back(1);

J

1

after the operation the new size() is

greater than old capacity(),

* areallocation takes place

* alliterators and all references to the
elements are invalidated.

Recitation4]

std::vector<int>

:

Stack

Heap

vect o
int 1
int 2
int 3
int 4

data

Code(Text)

Concurrent access with reallocation
Not thread safe:

one thread is modifying the
std::vector (push_back), while

void add_elements(std::vector<int>& vec, int thread_id) { another thread reads from it
for (inti=0;i< 10; ++i) { (back()), there’s a risk of data
vec.push_back(i); races.
}
}
int main() {

std::vector<int> vec ={1, 2, 3};
std::thread t1(writer, std::ref(vec));

std::thread t2([&vec]() {
std::cout << "value: " << vec.back(); << std::endl;});

t1.join();
t2.join();
o}

38

std::map

std: imap<int, Int> global map;

int main () {
for (int 1 = 0; 1 < 1000000; ++1)
global map[i] = 1i;
}
std::thread r thread(read map):;
std: :thread e thread(erase map);

‘\\\\\\\\\\

read map thread.join(); — |

erase map thread.join();

What could go wrong?

void read map () {

for (int i=0;1<1000000;++1) {

1f (global map.find(i) == global map.end())
continue;

int val = global map.at(i);

if(val !'= 1) {
std::cout << 1 << "," << wval << std::endl;

vold erase map () {
for (int i = 20000; 1 < 80000; ++1) {

global map.erase(1);

39

std::map

Multithread concurrent read and void read map () {
e . for (int i=0;1<1000000;++1i) {
modification leads to race condition L £ (global map.find(i) == global map.end())

ontinue;

std::map<int, int> global map; o . = global map.at(1);
- What if | need i) {
put << 1 << "," << wval << std::endl;

int main () {

for (ini i = 0; i< multithreads to

| global map[i] = concurrently share

std::thread r thread (=% SUCh data?

std: :thread e thread(eradSs

crase map () {
for (int 1 = 20000; 1 < 80000; ++1) {
global map.erase(1);

}

40

Locking

Locking

* scoped_lock()
* unique_lock()

* shared_lock()

 /

|
- .L.,‘:

A

~

ILOCK THE DOOR

-

42

std::scoped_lock

a mutex wrapper which obtains access to (locks) the provided mutex, and ensures

it is unlocked when the scoped lock goes out of scope

When does s_lock get released?

int global _num =0;
std::mutex globalMutex;

void incre(int num){

{
std::scoped_lock s lock(globalMutex),

global _num = global num +1;

} —

global _num =global_num + 1;

R =, O NOUT DS WN -

= O

std::scoped_lock

std::vector<int> my_vec;

std::mutex my_mutex;

void add_to_list(int new_value) {
std::scoped_lock<std::mutex> Ick(my_mutex);
my_vec.push_back(new_value);

}

bool list_contains(int value_to_find) {
std::scoped_lock<std::mutex> Ick(my_mutex);

return std::find(my_vec.begin(), my_vec.end(),value_to_find) != my_vec.end();

44

Locking

* scoped_lock()
* unique_lock()

* shared_lock()

45

std::unique_lock

* A unique lock is an object that manages a mutex object with unique ownership in both

states: locked and unlocked.

* RAIl: When creating a local variable of type std::unique_lock passing the mutex as

parameter.

* On construction, the object acquires a mutex object, for whose locking and unlocking

operations becomes responsible.

* This class guarantees an unlocked status on destruction (even if not called explicitly).

* Features:

* Deferred locking, Timeout locks, adoption of mutexes, movable(transfer of ownership)

46

Locking

* scoped_lock()
* unique_lock()

* shared_lock()

47

std::shared lock

Shared_lock allows for shared ownership of mutex. More than one thread could hold the
mutex at the same time.

std::shared_mutex mtx;

int global_val;

void print_val (int n, char c) {
std::shared_lock<std::shared_mutex > Ick (mtx);
std:.cout << global_val << std::end];

}

int main () {
std::thread th1 (print_val);
std::thread th2 (print_val);
th1.join();
th2.join();

) *

Exercise

* How can | use the RAIl class locks to implement R/W lock?
* R/W locks allow multiple readers at the same time

* But if there is writer, then there should be no readers, and only one writers.

Where to find the resources?

* Concurrency programing:

* Book: C++Concurrency in Action Practice Multithreading

* https://learn.microsoft.com/en-us /archive /blogs/ericlippert/what-is-this-thing-you-call-

thread-safe

* Notes:

* Atomic built-in: https:/ /gcc.gnu.org /onlinedocs /gcc-4.4.3 /gec/Atomic-Builtins.html
* Memory order: https:/ [cplusglus.comzreference/a'rgmig/memgry order/#google vignette

50

https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html
https://cplusplus.com/reference/atomic/memory_order/

	Slide 1: CS4414 Recitation 10 multi-threading II
	Slide 2: Winners of HW3 competition
	Slide 3: Recap
	Slide 4: Concurrency
	Slide 5: Sharing data among threads ---race condition
	Slide 6: Sharing data among threads ---race condition
	Slide 7: Example: Concurrent increments of a shared integer variable
	Slide 8: Example: Concurrent increments of a shared integer variable
	Slide 9: Example: Concurrent increments of a shared integer variable
	Slide 10: Example: Concurrent increments of a shared integer variable
	Slide 11: Thread Safety
	Slide 12: Thread safe
	Slide 13: Thread safe?
	Slide 14: std::atomic
	Slide 15: Atomic
	Slide 16: Data race condition: non-atomic access pattern
	Slide 17: Data race condition: non-atomic access pattern
	Slide 18: Atomic access
	Slide 19: Atomic
	Slide 20: Atomic member functions
	Slide 21: Memory_order
	Slide 22: More atomic member functions
	Slide 23: More atomic member functions
	Slide 25: Thread safe
	Slide 26: std::vector
	Slide 27: Multithreads’ data sharing with std::vector
	Slide 28: Read-only-access of std::vector
	Slide 29: Simultaneous read and write
	Slide 30: Simultaneous read and write
	Slide 31: Concurrent modification
	Slide 32: Concurrent modification
	Slide 33: Concurrent modification
	Slide 34: Concurrent modification
	Slide 35: Concurrent access with reallocation
	Slide 36: How is std::vector allocated in memory
	Slide 37: How is std::vector allocated in memory
	Slide 38: Concurrent access with reallocation
	Slide 39: std::map
	Slide 40: std::map
	Slide 41: Locking
	Slide 42: Locking
	Slide 43: std::scoped_lock
	Slide 44: std::scoped_lock
	Slide 45: Locking
	Slide 46: std::unique_lock
	Slide 47: Locking
	Slide 48: std::shared_lock
	Slide 49: Exercise
	Slide 50: Where to find the resources?

