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Winners of HW3 competition

Code that process .dat files in real-time:

1st place: Jeffrey Qian

2nd place: Arjun Saini

3rd place: Nam Anh Dang

4th place: Tianyi Zhang
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Special prices (code that uses cache.dat between runs)

Peter Engel, Tami Takada, Reevu Adakroy



Recap 

• Multithreading

• Race condition
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Concurrency

https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/ 
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https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/


Sharing data among threads    ---race condition

• Race condition:

• The situation where the outcome depends on the relative 

ordering of execution of operations on two or more threads; 

the threads race to perform their respective operations. 

Code source: 
https://github.com/aliciayuting/CS4414Demo.git 
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https://github.com/aliciayuting/CS4414Demo.git


Sharing data among threads    ---race condition

• Example: Concurrent increments of a shared integer variable.

• Each thread shares an integer called count initialized to 0, 

increments it 1 million times concurrently without any 

synchronization 

Code source: 
https://github.com/aliciayuting/CS4414Demo.git 
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https://github.com/aliciayuting/CS4414Demo.git


Example: Concurrent increments of a shared integer variable

number = 1

1. Read the value

2. increment
number++;

void Increment(){
     number ++;
}

3. Write back the 
value
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Thread 0



num = 0

Oh! I see 
num=0.

Thread 1. Write back 1.

Oh! I see 
num=1.

Thread 2. Write back 2.

Oh! I see 
num=2.

Thread 3. Write back 3.

Ideally what we want

num = 3
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Example: Concurrent increments of a shared integer variable

Read the value
1

Write back the value
2

3

4

5

6



num = 0

Read the value
Oh! I see 
num=0.

Thread 1. Write back 1.

Oh! I see 
num=1.

Thread 2. Write back 2.

Oh! I see 
num=2.

Thread 3. Write back 3.

Ideally what we want

num = 3
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Example: Concurrent increments of a shared integer variable

Write back the value

Will it always be 
in this 

sequence?



num = 0

Read the value
Oh! I see 
num=0.

Thread 1. Write back 1.

Oh! I see 
num=0.

Thread 2. Write back 1.

Oh! I see 
num=1.

Thread 3. Write back 2.

num = 2
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Example: Concurrent increments of a shared integer variable

1

2

4

5

6

Write back the value
3

Concurrent reads, before 

the previous thread write 

back, caused the out-of-

order inconsistent results. 



Thread Safety

•  A function, a piece of code, or an object is thread-safe when it can 

be invoked or accessed concurrently by multiple threads without 

causing unexpected behavior, race conditions, or data corruption.
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Thread safe

• Entities in C++ standard library and their thread-safety guarantees
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Thread safe?
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• Is integer type inherently thread-safe? 

• No, as we showed just now

How to make it 
thread-safe?



std::atomic
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• A template that defines an atomic type.

template< class T >

struct atomic;
(1) (since C++11)

template< class U >

struct atomic<U*>;
(2) (since C++11)

template< class U >

struct atomic<std::shared_ptr<U>>;
(3) (since C++20)

template< class U >

struct atomic<std::weak_ptr<U>>;

(4) (since C++20)

https://en.cppreference.com/w/cpp/atomic/atomic 

*
(more at 

the end of 
recitation if 
have time) 

https://en.cppreference.com/w/cpp/atomic/atomic


Atomic

• An atomic operation is an indivisible operation. 

• The operation is either done or not done. Such an operation would never be half-

done from any thread in the system.
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Data race condition: non-atomic access pattern

number = 1

1. Read the value

2. Increment number++;

void Increment(){
     number ++;
}

3. Write back the value
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Thread 0

Thread 1

Let me perform some 
instruction on number 
during this operation 

(between step1-3) 
concurrently



Data race condition: non-atomic access pattern
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Another concurrent thread t1
std::thread t1([&val]() {
 val++;
});



Atomic access

18

Another concurrent thread t1
std::thread t1([&val]() {
 val++;
});

std::atomic guarantees one 
thread to execute  the 
entire operation (val ++;) , 
during which no other 
thread interfering or 
interrupting  



Atomic

• An atomic operation is an indivisible operation. 

• std::atomic are implemented using hardware supports provided by modern CPU:

• Examples of atomic instructions:

• Compare-and-Swap (CAS)

• Load-Linked/Store-conditional (LL/SC) 

• fetch_and_add (FAA)

• Different CPUs provide different sets of atomic instructions. The implementation of 

std::atomic varies from architecture to architecture 
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Atomic member functions

• Atomic type:  std::atomic<type> 

• Constructor  std::atomic<bool> x(true);  std::atomic<uint32_t>  y(0);

• store()  x.store(false);      y.store(1, std::memory_order_relaxed); 

20
https://en.cppreference.com/w/cpp/atomic/atomic 

https://en.cppreference.com/w/cpp/atomic/atomic


Memory_order

Accesses to atomic objects may establish inter-thread synchronization and order non-

atomic memory accesses as specified by std::memory_order

• memory_order::relaxed  

// no synchronization or ordering constraints imposed on other reads or writes

• memory_order::consume               

// no reads or writes in the current thread dependent on the value currently loaded can 
be reordered before this load

• memory_order::acquire  

// no reads or writes in the current thread can be reordered before this load. 

• …. 21



More atomic member functions

• load()    bool z = x.load();  

• exchange()    uint32_t  m = y.exchange(100);

• operator=    y = 2;

• operator+=, operator -=  y += 1;     y.fetch_add(1);      (since C++20)

• operator++, operator--  y ++;

What about y = y + 1?

22
https://en.cppreference.com/w/cpp/atomic/atomic 

https://en.cppreference.com/w/cpp/atomic/atomic


More atomic member functions

• load()    bool z = x.load();  

• exchange()    uint32_t  m = y.exchange(100);

• operator=    y = 2;

• operator+=, operator -=  y += 1;     y.fetch_add(1);

• operator++, operator--  y ++;

What about y = y + 1?
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https://en.cppreference.com/w/cpp/atomic/atomic 

When multithreading, leads to race condition, 
because it involves multiple operations (read x, 
+1 and then assignment operation)

https://en.cppreference.com/w/cpp/atomic/atomic


Thread safe

• std::atomic

• std::shared_ptr
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std::vector

• Does std::vector guarantee thread-safety?
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Multithreads’ data sharing with std::vector

• When is std::vector thread-safe?

• Each thread has its own instance of std::vector (no concurrency)

• Read-only access

• When is std::vector not thread-safe?

• Simultaneous Read and Write

• Concurrent modification

• Reallocation access on reallocation or modification
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Read-only-access of std::vector
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int main() {
  std::vector<double> vec(100, 1.00);
  double t1_sum;
  double t2_sum;
  std::thread t1(read_vector,std::ref(vec), 1, std::ref(t1_sum));
  std::thread t2(read_vector,std::ref(vec), 2, std::ref(t2_sum));
  t1.join();
  t2.join();
  std::cout << "t1_sum="<< t1_sum << ",t2_sum=" << t2_sum;
…}

void read_vector(const std::vector<double>& vec, int thread_id, double& sum) {
    for (const auto& value : vec) {
         sum += value; 
}} // Each thread reads the vector and accumulates the sum

Thread safe, because only 
concurrent reads 



Simultaneous read and write
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0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10 11.11 12.12 13.13 14.14 15.15

thread t0 thread t1

vect[6] = 100.0; double x = vect[6];



Simultaneous read and write

30

0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10 11.11 12.12 13.13 14.14 15.15

thread t0 thread t1

Concurrent Read+write 
to the SAME element
is NOT thread-safe

vect[6] = 100.0; double x = vect[6];

x could be 
6.6 or 100.0 

after this.

What if the threads 
are operating on 

different elements?



Concurrent modification
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0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10 11.11 12.12 13.13 14.14 15.15

void set_value(std::vector<double>& vec, size_t index, double value) { 
    vec[index] = value; 
}

int main() {
    std::vector<double> vec(16) = {0.0, 1.1, 2.2, …. };
    std::thread t1(set_value, std::ref(vec), 5, 100.0);
    std::thread t2(set_value, std::ref(vec), 6, 101.0);
    t1.join(); 
    t2.join();
…}

Is this code 
thread-safe?



Concurrent modification
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0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10 11.11 12.12 13.13 14.14 15.15

thread t0 thread t1

vect[5] = 100.0;
vect[6] = 101.0;



Concurrent modification

33

0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10 11.11 12.12 13.13 14.14 15.15

thread t0 thread t1

vect[6] = 100.0;
vect[6] = 101.0;

Cache line



Concurrent modification
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0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10 11.11 12.12 13.13 14.14 15.15

thread t0 thread t1

vect[6] = 100.0;
vect[6] = 101.0;

Cache line

At the risk of 
false sharing

It isn’t thread-safe, due to false sharing.
Each thread modifies a different element 
(vec[5] and vec[6]), but they may share 
the same cache line, and the 
modifications cause cache invalidations.



Concurrent access with reallocation
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void add_elements(std::vector<int>& vec, int thread_id) {
     for (int i = 0; i < 10; ++i) {  
        vec.push_back(i);
     }
} 

int main() {
    std::vector<int> vec = {1, 2, 3}; 
    std::thread t1(writer, std::ref(vec)); 
    std::thread t2([&vec]() {
        std::cout << "value: " << vec.back(); << std::endl;});

    t1.join();
    t2.join();
…}

Is this code 
thread-safe?



How is std::vector allocated in memory
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Stack

Stack

Heap

data

Code(Text)

std::vector<int>  
vect

    ……
int 1

int        3

int 2

main()int main(){

std::vector<int> vect= {1,2,3};

}

Recitation4

Suppose 
size() = capacity() = 3



How is std::vector allocated in memory
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Stack

Stack

Heap

data

Code(Text)

std::vector<int>  
vect

    ……

int 1

int        3

int 2

main()int main(){

std::vector<int> vect= {1,2,3};

vect.push_back(1);

}

Recitation4
int 4

after the operation the new size() is 
greater than old capacity(),
• a reallocation takes place
• all iterators and all references to the 

elements are invalidated.



Concurrent access with reallocation
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void add_elements(std::vector<int>& vec, int thread_id) {
     for (int i = 0; i < 10; ++i) {  
        vec.push_back(i);
     }
} 

int main() {
    std::vector<int> vec = {1, 2, 3}; 
    std::thread t1(writer, std::ref(vec)); 
    std::thread t2([&vec]() {
        std::cout << "value: " << vec.back(); << std::endl;});

    t1.join();
    t2.join();
…}

Not thread safe:
one thread is modifying the 
std::vector (push_back), while 
another thread reads from it 
(back()), there’s a risk of data 
races.



std::map

std::map<int, int> global_map;

int main(){

     for (int i = 0; i < 1000000; ++i){

          global_map[i] = i;

     }

     std::thread r_thread(read_map);

     std::thread e_thread(erase_map);

     read_map_thread.join();

     erase_map_thread.join();

}

void read_map(){

    for (int i=0;i<1000000;++i){

       if(global_map.find(i) == global_map.end())

     continue;

       int val = global_map.at(i);

       if(val != i){

          std::cout << i << "," << val << std::endl;

       }

    }

}

void erase_map(){

     for (int i = 20000; i < 80000; ++i){

          global_map.erase(i);

     }

}

What could go wrong?

demo
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std::map

std::map<int, int> global_map;

int main(){

     for (int i = 0; i < 1000000; ++i){

          global_map[i] = i;

     }

     std::thread r_thread(read_map);

     std::thread e_thread(erase_map);

     read_map_thread.join();

     erase_map_thread.join();

}

void read_map(){

    for (int i=0;i<1000000;++i){

       if(global_map.find(i) == global_map.end())

     continue;

       int val = global_map.at(i);

       if(val != i){

          std::cout << i << "," << val << std::endl;

       }

    }

}

void erase_map(){

     for (int i = 20000; i < 80000; ++i){

          global_map.erase(i);

     }

}
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Multithread concurrent read and 
modification leads to race condition

What if I need 
multithreads to 

concurrently share 
such data?



Locking
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Locking

• scoped_lock()

• unique_lock()

• shared_lock()
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std::scoped_lock

a mutex wrapper which obtains access to (locks) the provided mutex, and ensures 

it is unlocked when the scoped lock goes out of scope

int  global_num = 0;
std::mutex  globalMutex;

void incre(int num){
 {
  std::scoped_lock s_lock(globalMutex);
  global_num = global_num + 1;
 }
 global_num = global_num + 1;
 …
}

1
2
3
4
5
6
7
8
9
10
11

When does s_lock get released?

43



std::vector<int> my_vec; 

std::mutex my_mutex; 

void add_to_list(int new_value) { 

    std::scoped_lock<std::mutex> lck(my_mutex);     

    my_vec.push_back(new_value); 

} 

bool list_contains(int value_to_find) { 

   std::scoped_lock<std::mutex> lck(my_mutex); 

   return std::find(my_vec.begin(), my_vec.end(),value_to_find) != my_vec.end(); 

} 44

std::scoped_lock



Locking

• scoped_lock()

• unique_lock()

• shared_lock()

45



• A unique lock is an object that manages a mutex object with unique ownership in both 

states: locked and unlocked.

• RAII: When creating a local variable of type std::unique_lock passing the mutex as 

parameter. 

• On construction, the object acquires a mutex object, for whose locking and unlocking 

operations becomes responsible.

• This class guarantees an unlocked status on destruction (even if not called explicitly). 

• Features:

• Deferred locking, Timeout locks, adoption of mutexes, movable(transfer of ownership)

std::unique_lock
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Locking

• scoped_lock()

• unique_lock()

• shared_lock()
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Shared_lock allows for shared ownership of mutex. More than one thread could hold the 

mutex at the same time.

std::shared_lock

std::shared_mutex mtx; 

int  global_val;

void print_val (int n, char c) {

    std::shared_lock<std::shared_mutex > lck (mtx); 

    std::cout << global_val << std::endl;

  } 

int main () { 

     std::thread th1 (print_val); 

std::thread th2 (print_val); 

th1.join(); 

th2.join(); 

… }
48



Exercise

• How can I use the RAII class locks to implement R/W lock?

• R/W locks allow multiple readers at the same time

• But if there is writer, then there should be no readers, and only one writers.
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Where to find the resources?

• Concurrency programing:

• Book: C++Concurrency in Action Practice Multithreading  

• https://learn.microsoft.com/en-us/archive/blogs/ericlippert/what-is-this-thing-you-call-

thread-safe

• Notes:

• Atomic built-in: https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html 

• Memory order:  https://cplusplus.com/reference/atomic/memory_order/#google_vignette 

50

https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html
https://cplusplus.com/reference/atomic/memory_order/
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