
CS4414 Recitation 10
multi-threading II

11/01/2024

Alicia Yang

1

Winners of HW3 competition

Code that process .dat files in real-time:

1st place: Jeffrey Qian

2nd place: Arjun Saini

3rd place: Nam Anh Dang

4th place: Tianyi Zhang

2

Special prices (code that uses cache.dat between runs)

Peter Engel, Tami Takada, Reevu Adakroy

Recap

• Multithreading

• Race condition

3

Concurrency

https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

4

https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

Sharing data among threads ---race condition

• Race condition:

• The situation where the outcome depends on the relative

ordering of execution of operations on two or more threads;

the threads race to perform their respective operations.

Code source:
https://github.com/aliciayuting/CS4414Demo.git

5

https://github.com/aliciayuting/CS4414Demo.git

Sharing data among threads ---race condition

• Example: Concurrent increments of a shared integer variable.

• Each thread shares an integer called count initialized to 0,

increments it 1 million times concurrently without any

synchronization

Code source:
https://github.com/aliciayuting/CS4414Demo.git

6

https://github.com/aliciayuting/CS4414Demo.git

Example: Concurrent increments of a shared integer variable

number = 1

1. Read the value

2. increment
number++;

void Increment(){
 number ++;
}

3. Write back the
value

7

Thread 0

num = 0

Oh! I see
num=0.

Thread 1. Write back 1.

Oh! I see
num=1.

Thread 2. Write back 2.

Oh! I see
num=2.

Thread 3. Write back 3.

Ideally what we want

num = 3

8

Example: Concurrent increments of a shared integer variable

Read the value
1

Write back the value
2

3

4

5

6

num = 0

Read the value
Oh! I see
num=0.

Thread 1. Write back 1.

Oh! I see
num=1.

Thread 2. Write back 2.

Oh! I see
num=2.

Thread 3. Write back 3.

Ideally what we want

num = 3

9

Example: Concurrent increments of a shared integer variable

Write back the value

Will it always be
in this

sequence?

num = 0

Read the value
Oh! I see
num=0.

Thread 1. Write back 1.

Oh! I see
num=0.

Thread 2. Write back 1.

Oh! I see
num=1.

Thread 3. Write back 2.

num = 2

10

Example: Concurrent increments of a shared integer variable

1

2

4

5

6

Write back the value
3

Concurrent reads, before

the previous thread write

back, caused the out-of-

order inconsistent results.

Thread Safety

• A function, a piece of code, or an object is thread-safe when it can

be invoked or accessed concurrently by multiple threads without

causing unexpected behavior, race conditions, or data corruption.

11

Thread safe

• Entities in C++ standard library and their thread-safety guarantees

12

Thread safe?

13

• Is integer type inherently thread-safe?

• No, as we showed just now

How to make it
thread-safe?

std::atomic

14

• A template that defines an atomic type.

template< class T >

struct atomic;
(1) (since C++11)

template< class U >

struct atomic<U*>;
(2) (since C++11)

template< class U >

struct atomic<std::shared_ptr<U>>;
(3) (since C++20)

template< class U >

struct atomic<std::weak_ptr<U>>;

(4) (since C++20)

https://en.cppreference.com/w/cpp/atomic/atomic

*
(more at

the end of
recitation if
have time)

https://en.cppreference.com/w/cpp/atomic/atomic

Atomic

• An atomic operation is an indivisible operation.

• The operation is either done or not done. Such an operation would never be half-

done from any thread in the system.

15

Data race condition: non-atomic access pattern

number = 1

1. Read the value

2. Increment number++;

void Increment(){
 number ++;
}

3. Write back the value

16

Thread 0

Thread 1

Let me perform some
instruction on number
during this operation

(between step1-3)
concurrently

Data race condition: non-atomic access pattern

17

Another concurrent thread t1
std::thread t1([&val]() {
 val++;
});

Atomic access

18

Another concurrent thread t1
std::thread t1([&val]() {
 val++;
});

std::atomic guarantees one
thread to execute the
entire operation (val ++;) ,
during which no other
thread interfering or
interrupting

Atomic

• An atomic operation is an indivisible operation.

• std::atomic are implemented using hardware supports provided by modern CPU:

• Examples of atomic instructions:

• Compare-and-Swap (CAS)

• Load-Linked/Store-conditional (LL/SC)

• fetch_and_add (FAA)

• Different CPUs provide different sets of atomic instructions. The implementation of

std::atomic varies from architecture to architecture

19

Atomic member functions

• Atomic type: std::atomic<type>

• Constructor std::atomic<bool> x(true); std::atomic<uint32_t> y(0);

• store() x.store(false); y.store(1, std::memory_order_relaxed);

20
https://en.cppreference.com/w/cpp/atomic/atomic

https://en.cppreference.com/w/cpp/atomic/atomic

Memory_order

Accesses to atomic objects may establish inter-thread synchronization and order non-

atomic memory accesses as specified by std::memory_order

• memory_order::relaxed

// no synchronization or ordering constraints imposed on other reads or writes

• memory_order::consume

// no reads or writes in the current thread dependent on the value currently loaded can
be reordered before this load

• memory_order::acquire

// no reads or writes in the current thread can be reordered before this load.

• …. 21

More atomic member functions

• load() bool z = x.load();

• exchange() uint32_t m = y.exchange(100);

• operator= y = 2;

• operator+=, operator -= y += 1; y.fetch_add(1); (since C++20)

• operator++, operator-- y ++;

What about y = y + 1?

22
https://en.cppreference.com/w/cpp/atomic/atomic

https://en.cppreference.com/w/cpp/atomic/atomic

More atomic member functions

• load() bool z = x.load();

• exchange() uint32_t m = y.exchange(100);

• operator= y = 2;

• operator+=, operator -= y += 1; y.fetch_add(1);

• operator++, operator-- y ++;

What about y = y + 1?

23
https://en.cppreference.com/w/cpp/atomic/atomic

When multithreading, leads to race condition,
because it involves multiple operations (read x,
+1 and then assignment operation)

https://en.cppreference.com/w/cpp/atomic/atomic

Thread safe

• std::atomic

• std::shared_ptr

25

std::vector

• Does std::vector guarantee thread-safety?

26

Multithreads’ data sharing with std::vector

• When is std::vector thread-safe?

• Each thread has its own instance of std::vector (no concurrency)

• Read-only access

• When is std::vector not thread-safe?

• Simultaneous Read and Write

• Concurrent modification

• Reallocation access on reallocation or modification

27

Read-only-access of std::vector

28

int main() {
 std::vector<double> vec(100, 1.00);
 double t1_sum;
 double t2_sum;
 std::thread t1(read_vector,std::ref(vec), 1, std::ref(t1_sum));
 std::thread t2(read_vector,std::ref(vec), 2, std::ref(t2_sum));
 t1.join();
 t2.join();
 std::cout << "t1_sum="<< t1_sum << ",t2_sum=" << t2_sum;
…}

void read_vector(const std::vector<double>& vec, int thread_id, double& sum) {
 for (const auto& value : vec) {
 sum += value;
}} // Each thread reads the vector and accumulates the sum

Thread safe, because only
concurrent reads

Simultaneous read and write

29

0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10 11.11 12.12 13.13 14.14 15.15

thread t0 thread t1

vect[6] = 100.0; double x = vect[6];

Simultaneous read and write

30

0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10 11.11 12.12 13.13 14.14 15.15

thread t0 thread t1

Concurrent Read+write
to the SAME element
is NOT thread-safe

vect[6] = 100.0; double x = vect[6];

x could be
6.6 or 100.0

after this.

What if the threads
are operating on

different elements?

Concurrent modification

31

0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10 11.11 12.12 13.13 14.14 15.15

void set_value(std::vector<double>& vec, size_t index, double value) {
 vec[index] = value;
}

int main() {
 std::vector<double> vec(16) = {0.0, 1.1, 2.2, …. };
 std::thread t1(set_value, std::ref(vec), 5, 100.0);
 std::thread t2(set_value, std::ref(vec), 6, 101.0);
 t1.join();
 t2.join();
…}

Is this code
thread-safe?

Concurrent modification

32

0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10 11.11 12.12 13.13 14.14 15.15

thread t0 thread t1

vect[5] = 100.0;
vect[6] = 101.0;

Concurrent modification

33

0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10 11.11 12.12 13.13 14.14 15.15

thread t0 thread t1

vect[6] = 100.0;
vect[6] = 101.0;

Cache line

Concurrent modification

34

0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10 11.11 12.12 13.13 14.14 15.15

thread t0 thread t1

vect[6] = 100.0;
vect[6] = 101.0;

Cache line

At the risk of
false sharing

It isn’t thread-safe, due to false sharing.
Each thread modifies a different element
(vec[5] and vec[6]), but they may share
the same cache line, and the
modifications cause cache invalidations.

Concurrent access with reallocation

35

void add_elements(std::vector<int>& vec, int thread_id) {
 for (int i = 0; i < 10; ++i) {
 vec.push_back(i);
 }
}

int main() {
 std::vector<int> vec = {1, 2, 3};
 std::thread t1(writer, std::ref(vec));
 std::thread t2([&vec]() {
 std::cout << "value: " << vec.back(); << std::endl;});

 t1.join();
 t2.join();
…}

Is this code
thread-safe?

How is std::vector allocated in memory

36

Stack

Stack

Heap

data

Code(Text)

std::vector<int>
vect

 ……
int 1

int 3

int 2

main()int main(){

std::vector<int> vect= {1,2,3};

}

Recitation4

Suppose
size() = capacity() = 3

How is std::vector allocated in memory

37

Stack

Stack

Heap

data

Code(Text)

std::vector<int>
vect

 ……

int 1

int 3

int 2

main()int main(){

std::vector<int> vect= {1,2,3};

vect.push_back(1);

}

Recitation4
int 4

after the operation the new size() is
greater than old capacity(),
• a reallocation takes place
• all iterators and all references to the

elements are invalidated.

Concurrent access with reallocation

38

void add_elements(std::vector<int>& vec, int thread_id) {
 for (int i = 0; i < 10; ++i) {
 vec.push_back(i);
 }
}

int main() {
 std::vector<int> vec = {1, 2, 3};
 std::thread t1(writer, std::ref(vec));
 std::thread t2([&vec]() {
 std::cout << "value: " << vec.back(); << std::endl;});

 t1.join();
 t2.join();
…}

Not thread safe:
one thread is modifying the
std::vector (push_back), while
another thread reads from it
(back()), there’s a risk of data
races.

std::map

std::map<int, int> global_map;

int main(){

 for (int i = 0; i < 1000000; ++i){

 global_map[i] = i;

 }

 std::thread r_thread(read_map);

 std::thread e_thread(erase_map);

 read_map_thread.join();

 erase_map_thread.join();

}

void read_map(){

 for (int i=0;i<1000000;++i){

 if(global_map.find(i) == global_map.end())

 continue;

 int val = global_map.at(i);

 if(val != i){

 std::cout << i << "," << val << std::endl;

 }

 }

}

void erase_map(){

 for (int i = 20000; i < 80000; ++i){

 global_map.erase(i);

 }

}

What could go wrong?

demo

39

std::map

std::map<int, int> global_map;

int main(){

 for (int i = 0; i < 1000000; ++i){

 global_map[i] = i;

 }

 std::thread r_thread(read_map);

 std::thread e_thread(erase_map);

 read_map_thread.join();

 erase_map_thread.join();

}

void read_map(){

 for (int i=0;i<1000000;++i){

 if(global_map.find(i) == global_map.end())

 continue;

 int val = global_map.at(i);

 if(val != i){

 std::cout << i << "," << val << std::endl;

 }

 }

}

void erase_map(){

 for (int i = 20000; i < 80000; ++i){

 global_map.erase(i);

 }

}

40

Multithread concurrent read and
modification leads to race condition

What if I need
multithreads to

concurrently share
such data?

Locking

41

Locking

• scoped_lock()

• unique_lock()

• shared_lock()

42

std::scoped_lock

a mutex wrapper which obtains access to (locks) the provided mutex, and ensures

it is unlocked when the scoped lock goes out of scope

int global_num = 0;
std::mutex globalMutex;

void incre(int num){
 {
 std::scoped_lock s_lock(globalMutex);
 global_num = global_num + 1;
 }
 global_num = global_num + 1;
 …
}

1
2
3
4
5
6
7
8
9
10
11

When does s_lock get released?

43

std::vector<int> my_vec;

std::mutex my_mutex;

void add_to_list(int new_value) {

 std::scoped_lock<std::mutex> lck(my_mutex);

 my_vec.push_back(new_value);

}

bool list_contains(int value_to_find) {

 std::scoped_lock<std::mutex> lck(my_mutex);

 return std::find(my_vec.begin(), my_vec.end(),value_to_find) != my_vec.end();

} 44

std::scoped_lock

Locking

• scoped_lock()

• unique_lock()

• shared_lock()

45

• A unique lock is an object that manages a mutex object with unique ownership in both

states: locked and unlocked.

• RAII: When creating a local variable of type std::unique_lock passing the mutex as

parameter.

• On construction, the object acquires a mutex object, for whose locking and unlocking

operations becomes responsible.

• This class guarantees an unlocked status on destruction (even if not called explicitly).

• Features:

• Deferred locking, Timeout locks, adoption of mutexes, movable(transfer of ownership)

std::unique_lock

46

Locking

• scoped_lock()

• unique_lock()

• shared_lock()

47

Shared_lock allows for shared ownership of mutex. More than one thread could hold the

mutex at the same time.

std::shared_lock

std::shared_mutex mtx;

int global_val;

void print_val (int n, char c) {

 std::shared_lock<std::shared_mutex > lck (mtx);

 std::cout << global_val << std::endl;

 }

int main () {

 std::thread th1 (print_val);

std::thread th2 (print_val);

th1.join();

th2.join();

… }
48

Exercise

• How can I use the RAII class locks to implement R/W lock?

• R/W locks allow multiple readers at the same time

• But if there is writer, then there should be no readers, and only one writers.

49

Where to find the resources?

• Concurrency programing:

• Book: C++Concurrency in Action Practice Multithreading

• https://learn.microsoft.com/en-us/archive/blogs/ericlippert/what-is-this-thing-you-call-

thread-safe

• Notes:

• Atomic built-in: https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html

• Memory order: https://cplusplus.com/reference/atomic/memory_order/#google_vignette

50

https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html
https://cplusplus.com/reference/atomic/memory_order/

	Slide 1: CS4414 Recitation 10 multi-threading II
	Slide 2: Winners of HW3 competition
	Slide 3: Recap
	Slide 4: Concurrency
	Slide 5: Sharing data among threads ---race condition
	Slide 6: Sharing data among threads ---race condition
	Slide 7: Example: Concurrent increments of a shared integer variable
	Slide 8: Example: Concurrent increments of a shared integer variable
	Slide 9: Example: Concurrent increments of a shared integer variable
	Slide 10: Example: Concurrent increments of a shared integer variable
	Slide 11: Thread Safety
	Slide 12: Thread safe
	Slide 13: Thread safe?
	Slide 14: std::atomic
	Slide 15: Atomic
	Slide 16: Data race condition: non-atomic access pattern
	Slide 17: Data race condition: non-atomic access pattern
	Slide 18: Atomic access
	Slide 19: Atomic
	Slide 20: Atomic member functions
	Slide 21: Memory_order
	Slide 22: More atomic member functions
	Slide 23: More atomic member functions
	Slide 25: Thread safe
	Slide 26: std::vector
	Slide 27: Multithreads’ data sharing with std::vector
	Slide 28: Read-only-access of std::vector
	Slide 29: Simultaneous read and write
	Slide 30: Simultaneous read and write
	Slide 31: Concurrent modification
	Slide 32: Concurrent modification
	Slide 33: Concurrent modification
	Slide 34: Concurrent modification
	Slide 35: Concurrent access with reallocation
	Slide 36: How is std::vector allocated in memory
	Slide 37: How is std::vector allocated in memory
	Slide 38: Concurrent access with reallocation
	Slide 39: std::map
	Slide 40: std::map
	Slide 41: Locking
	Slide 42: Locking
	Slide 43: std::scoped_lock
	Slide 44: std::scoped_lock
	Slide 45: Locking
	Slide 46: std::unique_lock
	Slide 47: Locking
	Slide 48: std::shared_lock
	Slide 49: Exercise
	Slide 50: Where to find the resources?

