
INSIDE THE LINUX SYSTEM
AND THE BASH SHELL

Professor Ken Birman
CS4414 Lecture 4

CORNELL CS4414 - FALL 2021. 1

IDEA MAP FOR TODAY

CORNELL CS4414 - FALL 2021. 2

If our program will run on
Linux, we should learn

about Linux

Process abstraction.
Daemons

How programs learn what
to do: rc files, environment

variables, arguments

Along the way… many useful Linux commands and bash features

RECAP

We saw that when our word-count program was running,
parallelism offered a way to get much better performance from
the machine, as much as a 30x speedup for this task.

In fact, Linux systems often have a lot of things running on them,
in the background (meaning, “not talking to the person typing
commands on the console.”)

CORNELL CS4414 - FALL 2021. 3

PAUSE FOR A DEMO

GOAL: ON KEN’S MACHINE, SEE SOME THINGS
THAT HAPPEN TO BE RUNNING RIGHT NOW.

CORNELL CS4414 - FALL 2021. 4

CORNELL CS4414 - FALL 2021. 5

CORNELL CS4414 - FALL 2021. 6

CORNELL CS4414 - FALL 2021. 7

CORNELL CS4414 - FALL 2021. 8

WHAT’S WITH THE ????? STUFF?

… apparently some sort of bug related to escaped newline
characters!

Linux isn’t perfect. Or it could be a bash or ps bug.
CORNELL CS4414 - FALL 2021. 9

LET’S SUMMARIZE SOME OF WHAT WE SAW

In addition to the Linux operating system “kernel”, Linux had
many helper programs running in the background.

We used the term daemon programs for these. The term is a
reference to physics, but a bit obscure.

A daemon program is launched during startup (or periodically)
and doesn’t connect to a console. It lives in the background.

CORNELL CS4414 - FALL 2021. 10

YOU CAN ALSO CREATE BACKGROUND TASKS
OF YOUR OWN

One way to do this is with a command called “nohup”, which
means “when I log out (“hang up”), leave this running.”

A second is with a command named “disown”.
 When you log out, bash kills any background jobs that you still own.
 If you “disown” a job, it leaves it running

CORNELL CS4414 - FALL 2021. 11

ONE REASON FOR DAEMONS: PERIODIC TASKS

In production systems, many things need to happen periodically

Linux and C++ have all sorts of features to help

 Within Linux, a tool called “cron” (for “chronological”) runs
jobs on a schedule that you can modify or extend

 Example: Once every hour, check for new photos on the
camera and download them.

CORNELL CS4414 - FALL 2021. 12

HOW CRON WORKS

There is a file in a standard location called the “crontab”,
meaning “table of jobs that run chronologically”

Each line in the file uses a special notation to designate when
the job should run and what program to launch

The program itself could be in any language and can even be a
Linux “bash script” (also called a “shell script”).

CORNELL CS4414 - FALL 2021. 13

HOW AT WORKS

Very similar to cron, but for a one-time command

The “atd” waits until the specified time, then runs it

Whereas cron is controlled from the crontab file, at is used at
the command-line.

CORNELL CS4414 - FALL 2021. 14

HOW DO THESE PROGRAMS KNOW WHAT WE
WANT THEM TO DO?
On Linux, programs have three ways to discover runtime
parameters that tell them what to do.
 Arguments provided when you run the program, on the command line
 Configuration files, specific to the program, that it can read to learn

parameter settings, files to scan, etc.
 Linux environment variables. These are managed by bash and can

be read by the program using “getenv” system calls.

CORNELL CS4414 - FALL 2021. 15

PROGRAMS CONTROLLED BY
CONFIGURATION FILES
In Linux, many programs use some sort of configuration file, just
like cron is doing. Some of those files are hidden but you can
see them if you know to ask.

 In any directory, hidden files will simply be files that start with
a name like “.bashrc”. The dot at the start says “invisible”

 If you use “ls –a” to list a directory, it will show these files.
You can also use “echo .*” to do this, or find, or

CORNELL CS4414 - FALL 2021. 16

A FEW COMMON HIDDEN FILES

~/.bashrc − The Bourne shell (bash) initialization script

~/.vimrc – A file used to initialize the vim visual editor

~/.emacs – A file used to initialize the emacs visual editor

/etc/init.d – When Linux starts up, the files here tell it how to
configure the entire computer

/etc/init.d/cron – Used by cron to track periodic jobs

CORNELL CS4414 - FALL 2021. 17

Bash replaces “~” with the pathname to your home directory

ENVIRONMENT VARIABLES

The bash configuration file is used to set the environment variables.

Examples of environment variables on Ubuntu include
 HOME: my “home directory”
 USER: my login user-name
 PATH: A list of places Ubuntu searches for programs when I run

a command
 PYTHONPATH: Where my version of Python was built

CORNELL CS4414 - FALL 2021. 18

ENVIRONMENT VARIABLES

The bash configuration file is used to set the environment variables.

Examples of environment variables on Ubuntu include
 HOME: my “home directory”
 USER: my login user-name
 PATH: A list of places Ubuntu searches for programs when I run

a command
 PYTHONPATH: Where my version of Python was built

CORNELL CS4414 - FALL 2021. 19

Other versions of Linux, like CentOS,
RTOS, etc might have different

environment variables, or additional
ones. And different shells could use

different variables too!

EXAMPLE, FROM KEN’S LOGIN

HOSTTYPE=x86_64
USER=ken
HOME=/home/ken
SHELL=/bin/bash
PYTHONPATH=/home/ken/z3/build/python/
PATH=/home/ken/.local/bin:/usr/local/sbin:/usr/local/bin:/usr
/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games

CORNELL CS4414 - FALL 2021. 20

SO… LET’S WALK THROUGH THE SEQUENCE
THAT CAUSES THESE TO BE “USED”
We will review

1) How Linux boots when you restart the computer

2) How bash got launched (this is when it read .bashrc)

3) How a command like “c++” gets launched

CORNELL CS4414 - FALL 2021. 21

WHEN UBUNTU BOOTS

Ubuntu is a version of Linux. It runs as the “operating system” or
“kernel”. But when you start the computer, it isn’t yet running.

Every computer has a special firmware program to launch a special
stand-alone program call the “bootstrap” program. In fact this is a
2-stage process (hence “stage ½ bootloader”)

This stand-alone program than reads the operating system binary
from a file on disk into memory and launches it.

CORNELL CS4414 - FALL 2021. 22

WHAT ABOUT UBUNTU ON WINDOWS?

Microsoft Windows has a “microkernel” on which they can host
Ubuntu as a kind of application. (Same with MacOS)

This is called a “virtual machine” approach. So Ken’s Windows
computer can also be used as an Ubuntu computer!

But this is a slower than running Ubuntu on the bare metal. Microsoft
is modifying their microkernel to eliminate this slowdown

CORNELL CS4414 - FALL 2021. 23

UBUNTU LINUX STARTS BY SCANNING
THE HARDWARE
Linux figures out how much memory the machine has, what kind of
CPU it has, what devices are attached, etc.

It accesses the same disk it booted on to learn configuration
parameters and also which devices to activate. For these activated
devices, it loads a “device driver”.

Then it starts the “init” daemon.

CORNELL CS4414 - FALL 2021. 24

THE INIT AND RLOGIN DAEMONS

The init daemon is the “parent” of all other processes that run on an Ubuntu
Linux system. /etc/init.d told it what to initially do at boot time.

It launched cron and the at daemon, and it also launches the application
that allows you to log in and have a bash shell connected to your console.

The rlogin daemon allows remote logins, if you configured Ubuntu to permit
them. If firewalls and IP addresses allow, you can then use rlogin to
remotely connect to a machine, like I did to access compute30 on Fractus.

CORNELL CS4414 - FALL 2021. 25

WHEN YOU LOG IN

The login process sees that “ken” is logging in.

It checks the secure table of permitted users and makes sure I am a
user listed for this machine – if not, “goodbye”!

In fact I am, and I prefer the bash shell. So it launches the bash
shell, and configures it to take command-line input from my console.
Now when I type commands, bash sees the string as input.

CORNELL CS4414 - FALL 2021. 26

BASH INITIALIZES ITSELF

The .bashrc file is “executed” by bash to configure itself for me

I can customize this (and many people do!), to set environment
variables, run programs, etc – it is actually a script of bash
commands, just like the ones I can type on the command line.

By the time my command prompt appears, bash is configured.

CORNELL CS4414 - FALL 2021. 27

WHEN WE LAUNCH PROGRAMS…

Bash (or cron, or whatever) looks for the program to launch using
the PATH variable as guidance on where to look. A special
Linux operation called “fork” followed by “exec” runs it.

The program is now active and will read the environment plus
any arguments you provided to know what to do. Some
programs fail at this stage because they can’t find a needed file
in the places listed in the relevant path, or an argument is wrong.

CORNELL CS4414 - FALL 2021. 28

EXAMPLE

I log in, and then edit a file using vim (Sagar prefers emacs). So:

1. init ran a login daemon.

2. That daemon launched bash.

3. Bash initialized using .bashrc, then gave a command-line prompt

4. When I ran “vim”, bash found the program and ran it, using PATH
to know where to look. “which vim” would tell me which it found.

5. Vim initialized itself, and created a visual editing window for me.

CORNELL CS4414 - FALL 2021. 29

“It’s a UNIX System! I know this.”

BASH NOTATION

First, just to explain about “prompts”, bash has a command
prompt that it shows when it is waiting for a command:

ken@compute30: echo “Hello world”

Even if my slide doesn’t show a prompt, it is really there. You
can customize it to show anything you like (your computer name,
the folder you are in, etc). On old Linux systems, it was “% ”

CORNELL CS4414 - FALL 2021. 30

BASH NOTATION

First, just to explain about “prompts”, bash has a command
prompt that it shows when it is waiting for a command:

ken@compute30: echo “Hello world”

Even if my slide doesn’t show a prompt, it is really there. You
can customize it to show anything you like (your computer name,
the folder you are in, etc). On old Linux systems, it was “% ”

CORNELL CS4414 - FALL 2021. 31

BASH NOTATION

In a bash script, you can always set environment variables using
the special bash command “export” (or the older “setenv”):

export PATH=/bin
Normally you want to “add” a directory to path. To do this you
expand the old value:

export PATH=$PATH:$HOME/myapp/bin
This says that in my home directory is a directory myapp/bin
with programs I might want to run. Bash will now look there, too.

CORNELL CS4414 - FALL 2021. 32

BASH NOTATION

In fact bash allows a shorthand version too

% PATH=$PATH:$HOME/myapp/bin
or even

% PATH=$PATH:~/myapp/bin # ~ is short for $HOME

Why so many notations? Linux evolved over 40 years… people got
tired of typing “export” or “setenv” or $HOME

CORNELL CS4414 - FALL 2021. 33

DIRECTORIES, FILES

Linux organizes files into a tree. Even a directory is actually a
special kind of file. Use “ls –l” to see details about a file.

Chdir (“cd”) to enter a directory.
 “/” is the root of the file system tree.
 “.” refers to the current directory.
 “..” is a way to access the parent directory.
 In the bash shell, “~” refers to your home directory.

CORNELL CS4414 - FALL 2021. 34http://researchhubs.com/post/computing/linux-cmd/linux-directory.html

RULES ABOUT FILE NAMES

Linux directories limit the length of a file name to 255 chars.

The maximum length of a pathname, from the root, is 4096

Alphanumeric and a few characters like . _ -

Unlike Windows and Mac, don’t use spaces in file names.

CORNELL CS4414 - FALL 2021. 35

PROCESSES

When you launch a process (lke from bash), it gets executed and
has a process id.

The “ps” and “top” commands let you see what you have running

You can kill a process in various ways: ^C, kill pid, logging out
(there is also a way to prevent this, called “nohup”)

CORNELL CS4414 - FALL 2021. 36

LINUX COMMANDS

There are hundreds of them!

In fact you have to install them, in batches, because they use so
much space if you install everything.

Learn about each command using its “manual” page. Just
google it, like “Linux find command” (or “man 1 find”)

CORNELL CS4414 - FALL 2021. 37

COMMANDS ARE REALLY EXECUTABLE FILES:
READ/WRITE/EXECUTE FILE “PERMISSIONS”
Each file in Linux has permissions, visible via “ls –l”. Permissions are
shown as [dlcb]rwxrwxrwx. The d, if present, means that this file is a
directory. The other letters are for special types of files

The next three are permissions for the user who created the file

The next three are for other users in the owner’s “group”

The last three are for users outside these two categories

CORNELL CS4414 - FALL 2021. 38

SPECIAL FILES (S/D/C/B/R…)

Linux uses file names to refer to devices like the disk, or your
camera (if you attach it) or your computer display and
keyboard.

There are also files types with other special meanings:

 Links: a way to give a file a second name (an “alias”)

 c or b: character (keyboard) or block (disk) devices

 r: “raw”. A way to access a device “directly”.

CORNELL CS4414 - FALL 2021. 39

THE PERMISSIONS THEMSELVES

Read means “allowed to see the contents”. For a file, this means
the bytes. For a directory, this means you can list the files in the
directory.

Write means “allowed to make changes”. For a directory this
means creating or deleting files.

Execute is very complicated…
CORNELL CS4414 - FALL 2021. 40

EXECUTE: THEY RAN OUT OF BITS SO THEY
GAVE IT MULTIPLE MEANINGS
If the file is a program, execute means “run the program”

If the file is a “shell file”, execute means “launch the bash
program (or it could be some other shell), and tell it to run it.

If the file is a directory, “execute” means “can access files in it”.
Note: this means you can sometimes read or run a file that you
wouldn’t be able to “see” by listing the directory it is in!

CORNELL CS4414 - FALL 2021. 41

SUDO

Linux has the concept of a “superuser”. Used when installing
programs

Running a command using “sudo” can “override” the normal
restrictions. You’ll need this to install extra commands.

Be aware that you can also break Linux easily by changing
settings or modifying/removing a file that matters.

CORNELL CS4414 - FALL 2021. 42

REMEMBER THE DAEMONS?
KILLING THEM IS RISKY!

Sometimes a computer seems very busy, or even stuck, and novice
users will check for what is running and kill it.

With “sudo” you can kill anything! Like a daemon-killing sword…

… but you need to know what you are killing. Linux depends on
many of the background daemons!

CORNELL CS4414 - FALL 2021. 43

SOME DIRECTORIES TO KNOW ABOUT

The current working directory: this is where you are right now,
and where files created by commands or programs will be put
by default.

For example, if you compile fast-wc.cpp and name the
executable fast-c, you could run it by typing ./fast.wc.

If “.” is in PATH, then you can just type fast-wc
CORNELL CS4414 - FALL 2021. 44

SOME DIRECTORIES TO KNOW ABOUT

/tmp is a place for programs to put temporary files needed
while executing. These are automatically deleted if you forget to
do so (on reboot).

/dev/null: a black hole. We’ll see a use for it soon!

A fun one: You can configure Linux to have a temporary file
system entirely in memory (“RAM”). Called /ramfs

CORNELL CS4414 - FALL 2021. 45

MOUNT COMMAND

Linux treats each storage device (including “ramdisk”) as a separate
entity.

A storage device can be “raw” meaning “blocks of bytes” or it can
have a file system on it (a tree data structure). At boot time there is
just one storage device with an active file system.

The “mount” command attaches a storage device with a file system
on it to your directory structure, so that you can access the files in it.

CORNELL CS4414 - FALL 2021. 46

MORE DIRECTORIES TO KNOW ABOUT

/bin and /usr/bin: Standard places where programs are put.
Of course you can add more places by installing programs or
building your own, and modifying the search PATH variable

/include: The header files for system calls and standard libraries

/etc, /init.d: Configuration files used by Linux itself, and the
ones used by daemons like cron

CORNELL CS4414 - FALL 2021. 47

HOW DO PEOPLE LEARN THIS STUFF?

Linux is “self documented”! You can buy a book… but no need!

The Linux “man” program is a user manual for Linux, and has sections
covering commands (man 1 find, for example), system calls (man 2
open), libraries (man 3) …

Bash has a “help” command that will print these same pages. help,
by itself, lists all available commands. help find would print the man
page for the find command.

CORNELL CS4414 - FALL 2021. 48

SOME REALLY USEFUL COMMANDS TO LEARN

You’ve seen: bash, vim/emacs [pick one], cat, ls, chdir, mkdir, rm, rmdir,
more, find, tr, sort, uniq, cron, rlogin, c++, which, sudo

apt and apt-get are used to install packages. Many “missing” things just
need to be installed. For example this sequence:
ken@compute30% sudo apt-get update // updates everything
ken@compute30% sudo apt-get upgrade // adds optional features
ken@compute30% sudo apt-get install g++ // installs GNU C++ compiler

CORNELL CS4414 - FALL 2021. 49

Ken’s .bashrc file set the prompt to
the machine he is on, followed by “% ”

SOME REALLY USEFUL COMMANDS TO LEARN

ps: Used to see what processes are running
who: Used to see if other people are on this same machine
top: Used to see the “heavy hitters” among active processes
apt/apt-get: Used to install packages like the GNU C++ compiler,
Python, Java, Eclipse
tr and sed: two “editors” controlled by command-line options
tar: Makes a single big file from a list of files or a directory
gzip: Compresses a big file

CORNELL CS4414 - FALL 2021. 50

SOME REALLY USEFUL COMMANDS TO LEARN

C++: Compiler for C++ programs

gdb: Debugger used with C++ programs. Requires c++ -g

time: Measures how long something takes to run.

 It breaks it down: wall-clock time (“real”), time spent running
processes (“user”) and time spent in the Linux kernel (“sys”)

gprof: Fancy tool to understand where your code was spending
time. Requires a special c++ command-line argument.

CORNELL CS4414 - FALL 2021. 51

ALL OF THESE TAKE ARGUMENTS

 -std=c++17 means “permit use of C++ 17 features”
 -g means “I’m still debugging”. Don’t combine with –O3
 -O3 means “apply heavy optimizations”
 -pg means “I plan to run the gprof profiler”
 -Wxxx means “warn about xxx…” (many options)
 -pthreads means “I’m using C++ threads”
 -o xxx means “name the compiled program xxx”

CORNELL CS4414 - FALL 2021. 52

g++ -std=c++17 -O3 -Wall -Wpedantic -pthread -o fast-wc fast-wc.cpp

FOREGROUND/BACKGROUND

In Linux, each command you execute runs as a “process”. All the
commands I showed you run in the “foreground”.

A process will have some source of input (stdin), output (stdout) and
some place for error messages (stderr).

We say that a process is in the foreground if console input is
currently controlled by that process. A background process can run,
but will pause if it reads console input.

CORNELL CS4414 - FALL 2021. 53

HOW TO RUN A BACKGROUND PROCESS

In bash, just give the command line but put a single & at the end.

(Note: double &, as in &&, means something else).

Another option: run a command, then use “^Z” and say “bg”.
Bash will freeze the command (^Z), then restart it in the
background.

CORNELL CS4414 - FALL 2021. 54

^C VERSUS ^Z

^C kills the foreground process. There is also a command, “kill”
to terminate a background process, e.g.: kill %1”

^Z “freezes” a process. It halts but is restartable. To restart it,
type the process “number” (%1) or “bg” or “fg”.
 bg puts it in the background. You can run other commands.
 fg puts in the foreground. It is connected to the console.
 “jobs” command lists things you’ve put in the background

CORNELL CS4414 - FALL 2021. 55

^S, ^Q, ^O

^S pauses the screen display of output, but not the process.

^Q resumes the screen output.

^O redirects console output to a black hole (/dev/null). ^O is a
toggle: typing ^O again restores console output.

CORNELL CS4414 - FALL 2021. 56

ESC, ^D

Many editors use the “ESC” character to mean “drop out of
visual editing mode into command mode”

In vim, “:” lets you do this for a single command.

^D is used to say “no more input”. Applications that read
console input will see an “end of file”

CORNELL CS4414 - FALL 2021. 57

FILE NAME EXTENSIONS

In Windows and Mac systems, we get used to the idea that files have
types like “powerpoint” (name.pptx), PDF (name.pdf), image
(name.jpg or name.jpeg).

In Linux, file name extensions are optional, but some are common,
like name.cpp, name.h or name.hpp, etc.

You can rename a file: Many people rename a.out (default
executable name) with something sensible like “myWordCount”

CORNELL CS4414 - FALL 2021. 58

PIPES AND REDIRECTION

If we write
 find . | wc
This means “find all files in this directory and its children and list
file names. Here we piped the output into the “wc” command,
which will counts lines (the number of files!) and characters.
 find . > file_list
means “create a file called file_list containing the output”. If you
use >> it means “append the output to the end of the file”.

CORNELL CS4414 - FALL 2021. 59

HEAD, MORE, TAIL

The “head” command shows just the first lines of a file, or of the
input received via a pipe.

More shows one page of its input at a time. Type “q” to quit.

Tail is like head, but shows the end of the file.

CORNELL CS4414 - FALL 2021. 60

EXAMPLE

Ken often compiles programs this way:
g++ myprogram.cpp |& more

|& means “pipe output, including any error reports”. With |,
error messages go to the console (not to the target of the pipe)

This lets him see any errors, but “pauses” after each full page.

CORNELL CS4414 - FALL 2021. 61

PIPES AND REDIRECTION

You can also send the contents of a file into a program:
 more < file_list
Shows the data in file_list one page at a time

 find . > file_list &
Runs that same find command “in the background”
 fg
Pulls it back into the “foreground” (and waits for it)

CORNELL CS4414 - FALL 2021. 62

DO YOU REMEMBER THE TIMED WORD-
COUNT RACE FROM LECTURE 1?
Bash has a built-in timing capability:

time command

But of course printing our sorted list of counts would be the main
time spent. So I used

time command > /dev/null
This timed the command but “threw away” the actual output!

CORNELL CS4414 - FALL 2021. 63

SHELL SCRIPTS

You can take it to the next level by creating a file with bash
commands and then setting the execute permission bit for it.

Now if you “run” that file name, it runs the script of commands!

Bash supports variables, loops, conditional tests, simple math,
string manipulations. You can even pipe program output into a
bash variable. Very flexible and useful!

CORNELL CS4414 - FALL 2021. 64

CMAKE SCRIPTS

Similar to bash scripts, but controlled by a “makefile” (and you have
to actually run cmake as a command). Again, many fancy options
A basic makefile has the form
something: files it depends on

command(s) to “rebuild” it

Example
iconwriter: iconwriter.cpp iconwriter.hpp

g++ -O3 iconwriter.cpp –o iconwriter

CORNELL CS4414 - FALL 2021. 65

Cmake will rebuild “iconwriter” if
the .cpp or .hpp file has changed

SUMMARY

Our class is working with C++ on Linux, so we need to become
familiar with Linux. Linux ≅ kernel + device drivers + daemons +
standard programs like initd and bash

Today we reviewed some Linux concepts and tools as seen by the
bash user who might be creating a C++ application.

In future lectures we will see some of the Linux system calls, that a
program (in any language) can use to talk directly to the kernel.

CORNELL CS4414 - FALL 2021. 66

	Inside the Linux System�and the Bash shell
	Idea Map for today
	Recap
	Pause for a demo��GoaL: On Ken’s Machine, see some things that happen to be running right now.
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	What’s with the ????? Stuff?
	Let’s summarize some of what we saw
	You can also create background tasks of your own
	One reason for daemons: periodic tasks
	How Cron works
	How at works
	How do these programs know what we want them to do?
	Programs controlled by configuration files
	A few common hidden files
	Environment variables
	Environment variables
	Example, from Ken’s Login
	So… let’s walk through the sequence that causes these to be “used”
	When Ubuntu Boots
	What about Ubuntu on Windows?
	Ubuntu Linux starts by scanning �the hardware
	The init and rlogin daemons
	When you log in
	Bash initializes itself
	When we launch programs…
	Example
	Bash notation
	Bash notation
	Bash notation
	Bash Notation
	Directories, files
	Rules about file names
	Processes
	Linux commands
	Commands are really executable files: Read/Write/Execute file “permissions”
	Special Files (S/d/c/b/R…)
	The permissions themselves
	Execute: They ran out of bits so they gave it multiple meanings
	sudo
	Remember the Daemons?�Killing them is Risky!
	Some directories to know about
	Some directories to know about
	Mount command
	More directories to know about
	How do people learn this stuff?
	Some really useful commands to learn
	Some really useful commands to learn
	Some really useful commands to learn
	All of these take arguments
	Foreground/background
	How to run a background process
	^C versus ^Z
	^S, ^Q, ^O
	ESC, ^D
	File name extensions
	Pipes and redirection
	Head, More, tail
	Example
	Pipes and Redirection
	Do you remember the timed word-count race from lecture 1?
	Shell Scripts
	Cmake scripts
	Summary

