
Memory and C Programming
Robbert van Renesse

What is Memory?

What is Memory?

• I can’t recall…

I remember now:

• Memory is an array of bytes
• An index into this array is called an ”address”
• A variable holding an address is called a “pointer”

Types of memory

• Code: machine instructions (read-only)
• Read-only data (string constants etc.)
• Global variables
• Heap: dynamically allocated memory
• Stack

You can store your data in global variables, on the heap, or on the stack

Logical view of process memory

6

0xffffffff

0x00000000

stack

text

data

heap

read-only text segment contains code and constants

data segment contains global variables

heap used for memory allocation (malloc)

call stack

How many bits in an address for this CPU?
Why is address 0 not mapped?

segments

Review: stack (aka call stack)

7

int main(argc, argv){
 …
 f(3.14)
 …
}

int f(x){
 …
 g();
 …
}

int g(y){
 …
}

stack frame for
main()

stack frame for f()

stack frame for g()

PC/IP

SP

FP

arguments (3.14)

return address

local variables

saved registers

saved FP (main)

scratch space

Review: heap

8

“break”

“free list”

pointer to next free chunk

in use

free

start of heap segment
end of data segment

NULL

Three types of data memory

Global Heap Stack
allocated at start of process using malloc() at start of function call
initial state as specified or 0 otherwise junk (or 0) as specified or junk otherwise
released at end of process using free() at end of function call

• Like Java programming, but
• no garbage collection
• no type safety
• no object-orientation, polymorphism, container types, …

• Instead:
• ”structs” (instead of classes)
• pointers (instead of references)
• malloc/free (instead of new and garbage collection)

C Programming

#include <stdio.h>

int main()
{

printf(“Hello World\n”);
return 0;

}

Hello World

struct square
{

int width, height;
};

typedef struct square square_t;

Structs

void f()
{

square_t sq1, sq2; // on the stack!
square_t* ptr = &sq1; // a pointer

ptr->width = 300;
…

Pointers

void f()
{

square_t* ptr = malloc(sizeof(square_t));

ptr->width = 300;
…
free(ptr);
…

malloc/free

• Implement a queue and a test program
•Must be done by each student individually
• by Wednesday February 7, so you have almost two weeks
• but start today if only to find out how hard it is to get started on this!
• you don’t want to find this out too late

•Tar file with instructions (README file) on CMS

Project P0

•Testing is at least as important as implementing the data
structure itself
•Don’t be satisfied with a simple “it compiles and I can do

a simple access”
• think about corner cases, and check those
• dequeue from an empty queue
• removing the first entry of a queue
• removing the last entry of a queue
• …

On Testing

•All projects should be done in a Linux / x86 environment
• MacOSX on x86 or M1/M2 works pretty well too, but debugging tools quite different

• Learn to use
• C compiler: cc (or gcc or clang)
• Debugging tools: valgrind, gdb
• Code project tools: make
• Code repo: git
• use private github repo on github.coecis.cornell.edu

• Running Linux
• Can install Linux on your laptop
• dual boot or virtual machine (Vmware, VirtualBox, Hyper-V, …)

• Remote access
• CSUGlab machines

Linux…

