
How to read a code repository?
Reading egos-2000 as an example

Read a repository: 3 passes
• 1st pass

• read documents and filenames

• 2nd pass

• track the execution: earth grass applications

• 3rd pass

• read details of specific functionality, such as system call

→ →

Documents of egos-2000
• Explain why the project is important

• README.md

• Explain how to use this project

• references/USAGES.md

• Explain the internal design of the project

• references/README.md Software companies use tools like

Read filenames: earth

• gpio and uart are buses connecting the
CPU with I/O devices, just like usb

• in the first pass of reading code, knowing
what they are on the high-level is enough

Read filenames: earth

• dev_disk controls ROM and SD card

• dev_tty reads keyboard input and print
output to the screen

• dev_page does paging from memory to
the first 1MB of the SD card

Described in references/README.md, the document for internal design.

Read filenames: earth

• cpu_intr: interrupt/exception handling

• cpu_mmu: memory management unit (MMU)

Described in references/README.md, the document for internal design.

Read filenames: earth

• earth.S and earth.c are for earth layer
initialization (e.g., the main() of earth)

• earth.lds specifies the memory layout

Read filenames: earth/sd

• sd.h provides basic definitions

• sd_init.c initializes the SD card

• sd_rw.c provides SD card read and write

• sd_utils.c provides helper functions

• There is an optional project P4 on SD driver

Read filenames: grass

Described in references/README.md, the document for internal design.

• grass.S and grass.c: initialization

• grass.lds: memory layout

Read a repository: 3 passes
• 1st pass

• read documents and filenames

• 2nd pass

• track the execution: earth grass applications

• 3rd pass

• read details of specific functionality, such as system call

→ →

The Key:
Find main() functions

and track executions from there

grep is a useful command
> cd egos-2000
> grep "main(" -r *

Main functions in the repository
> cd egos-2000
> grep "main(" -r *
earth/earth.S: /* Call main() of earth.c */
earth/earth.c:int main() {
grass/grass.S: /* Call main() of grass.c */
grass/grass.c:int main() {
tools/mkrom.c:int main() {
tools/mkfs.c:int main() {

apps/*.c: /* Every application has a main() function */

Main function in earth
• Read earth.s and earth.c

• Boot loader disable interrupt and call earth main()

• Earth main() essentially

• initialize dev_tty, dev_disk, cpu_intr, cpu_mmu

• load and enter the grass layer

Main function in grass
• Read grass.s and grass.c

• Initialize data structures for processes (like P1)

• Initialize and enable timer interrupt

• Load and enter the first application: GPID_PROCESS

• Where is GPID_PROCESS defined?

Find GPID_PROCESS

> cd egos-2000
Find which header file contains GPID_PROCESS
> grep "GPID_PROCESS" -r * | grep “\.h"

library/servers/servers.h: GPID_PROCESS,
library/servers/servers.h: /* GPID_PROCESS */

Kernel servers (aka. Daemon)
• GPID_PROCESS

• spawn and kill processes

• GPID_FILE & GPID_DIR

• something about file system

• GPID_SHELL

• shell for entering user commands

Control flow sketch
• During boot up

• earth main() grass main() GPID_PROCESS

• GPID_PROCESS GPID_FILE

• GPID_PROCESS GPID_DIR

• GPID_PROCESS GPID_SHELL

• After boot up

• GPID_SHELL GPID_PROCESS user applications

→ →
→
→
→

→ →

Two more main functions to read
> cd egos-2000
> grep "main(" -r *
earth/earth.S: /* Call main() of earth.c */
earth/earth.c:int main() {
grass/grass.S: /* Call main() of grass.c */
grass/grass.c:int main() {
tools/mkrom.c:int main() {
tools/mkfs.c:int main() {

apps/*.c: /* Every application has a main() function */

mkfs and mkrom
• During make, the RISC-V compiler compiles egos-2000

• i.e., create everything under build/

• During make install,

• mkfs creates disk.img

• mkrom creates bootROM.bin

> cd egos-2000
> grep "main(" -r *
earth/earth.S: /* Call main() of earth.c */
earth/earth.c:int main() {
grass/grass.S: /* Call main() of grass.c */
grass/grass.c:int main() {
tools/mkrom.c:int main() {
tools/mkfs.c:int main() {

apps/*.c: /* Every application has a main() function */

Control flow provides a rough picture

We now know the structure of the work and some details.

Control flow provides a rough picture

Read a repository: 3 passes
• 1st pass

• read documents and filenames

• 2nd pass

• track the execution: earth grass applications

• 3rd pass

• read details of specific functionality, such as system call

→ →

Consider apps/user/cat.c

Send requests to file system

Code of cat User library Grass kernel
dir_lookup()
file_read()

Kernel servers (GPID_DIR, GPID_FILE, …)

Application sys_send()

Receive data from file system

Code of cat User library Grass kernel
dir_lookup()
file_read()

Kernel servers (GPID_DIR, GPID_FILE, …)

Application sys_recv()

Data structures for system call

See header file grass/syscall.h

App invoking syscall step#1
static struct syscall *sc = (struct syscall*)SYSCALL_ARG;

static void sys_invoke() {
 ((int)0x2000000) = 1;
}

int sys_send(int receiver, char* msg, int size) {
 if (size > SYSCALL_MSG_LEN) return -1;

 sc->type = SYS_SEND;
 sc->msg.receiver = receiver;
 memcpy(sc->msg.content, msg, size);
 sys_invoke();
 return sc->retval;
}

a well-known memory address

static struct syscall *sc = (struct syscall*)SYSCALL_ARG;

static void sys_invoke() {
 ((int)0x2000000) = 1;
}
// The sys_send function takes 3 parameters
int sys_send(int receiver, char* msg, int size) {
 if (size > SYSCALL_MSG_LEN) return -1;

 sc->type = SYS_SEND;
 sc->msg.receiver = receiver;
 memcpy(sc->msg.content, msg, size);
 sys_invoke();
 return sc->retval;
}

App invoking syscall step#2

static struct syscall *sc = (struct syscall*)SYSCALL_ARG;

static void sys_invoke() {
 ((int)0x2000000) = 1;
}

int sys_send(int receiver, char* msg, int size) {
 if (size > SYSCALL_MSG_LEN) return -1;
 // Prepare the system call data structure
 sc->type = SYS_SEND;
 sc->msg.receiver = receiver;
 memcpy(sc->msg.content, msg, size);
 sys_invoke();
 return sc->retval;
}

App invoking syscall step#3

static struct syscall *sc = (struct syscall*)SYSCALL_ARG;

static void sys_invoke() {
 ((int)0x2000000) = 1; // Trigger a software interrupt
} // which is interrupt #3

int sys_send(int receiver, char* msg, int size) {
 if (size > SYSCALL_MSG_LEN) return -1;

 sc->type = SYS_SEND;
 sc->msg.receiver = receiver;
 memcpy(sc->msg.content, msg, size);
 sys_invoke();
 return sc->retval;
}

App invoking syscall step#4

void kernel() {
 int mcause;
 __asm__ volatile("csrr %0, mcause" : "=r"(mcause));

 int id = mcause & 0x3ff;
 if (mcause & (1 << 31)) {
 if (id == 3) { syscall_handler(); }
 if (id == 7) { timer_handler(); } // last lecture
 } else {
 fault_handler();
 }
}

App invoking syscall step#5

Homework
• Handle system call with the ecall instruction

• Replace *((int*)0x2000000) = 1 by asm(“ecall”)
which triggers exception#8/#11 instead of interrupt#3

• P2 will be due on Mar 24

• Next lecture: memory exception and protection

