
Memory Management:
Translation and Protection

Memory Management
• Hello World

• Why translation?

• Case study: software TLB in egos

• Why protection?

• Case study: physical memory protection (PMP)

• Combining the two: page table and virtual memory

Recall hello-world from week#2

int str_len = 14;

int main() {
char* str = malloc(str_len);
memcpy(str, “Hello World!\n”, str_len);
printf(“%s”, str);
return 0;

}

Memory

Code

Read-only data

Data

Stack

Heap

Recall memory map from week#6

CPU debug @0000_0000

(ignore this for building an OS)

Device control @0200_0000

Boot ROM @2000_0000
Main memory @0x8000_0000

Before boot up

Boot ROM

Main memory
Code

Read-only data

Data

Stack

Heap

• Boot ROM holds code,
read-only data and data.

Hello-world

Boot up, step #1

Boot ROM

Main memory
Code

Read-only data

Data

Stack

Heap

• Boot ROM holds code,
read-only data and data.

• The first few instructions
setup the stack pointer.

Hello-world

Boot up, step #2

Boot ROM

Main memory
Code

Read-only data

Data

Stack

Heap

• Boot ROM holds code,
read-only data and data.

• The first few instructions
setup the stack pointer.

• Copy data from ROM to
main memory.

Hello-world

After the 2-step boot up

Boot ROM

Main memory

Read-only data

• Boot ROM holds code,
read-only data and data.

• The first few instructions
setup the stack pointer.

• Copy data from ROM to
main memory.

• The break pointer is
saved as 8-byte in data.

Heap
Break pointer (brk)

Data brk

Stack
Stack pointer

Code
Instruction

pointer

Reading the code
• Boot ROM holds code,

read-only data and data.

• The first few instructions
setup the stack pointer.

• Copy data from ROM to
main memory.

• The break pointer is
saved as 8-byte in data.

earth/earth.lds

earth/earth.S

earth/earth.c
& first 2 loops in main()

earth/earth.lds
& libc/malloc.c

Hello-world Multi-threading→

Read-only data

Heap

Data

Stack
Stack pointer of thread #3

Code

Stack
Stack pointer of thread #2

Stack
Stack pointer of thread #1

Boot ROM

Main memory

Memory Management
• Hello World

• Why translation?

• Case study: software TLB in egos

• Why protection?

• Case study: physical memory protection (PMP)

• Combining the two: page table and virtual memory

Why translation?
• In P1, you write the code of every thread yourself.

• In an operating system,

• Google writes the code of Chrome

• Adobe writes the code of Photoshop

• …

• An operating system provides the standard memory layout
specifying where to put code, stack, etc.

Standard memory layout of win32

https://mikeczumak.com/blog/windows-exploit-development-part-1-basics/

code, rodata and data of application

everything else, including the OS code and data

for dynamic library linking, out of today’s scope

Goal #1 of memory translation

Different threads have different

stack address, code address, etc.

Different processes have the same

stack address, code address, etc.

Goal #2 of memory translation

Different threads share the same

code, data, heap regions.

Different processes have separate

code, data and heap regions.

Memory Management
• Hello World

• Why translation?

• Case study: software TLB in egos

• Why protection?

• Case study: physical memory protection (PMP)

• Combining the two: page table and virtual memory

Case study: Software TLB
• Every memory page is 4KB (0x1000 bytes).

• For every application in egos-2000:

• 3 pages for code/rodata/data/heap

• 0x0800_5000 … 0x0800_8000

• 2 pages for stack

• 0x8000_0000 … 0x8000_2000

• In addition, egos-2000 maintains a buffer of 256 pages (1 MB)

3 memory regions for Software TLB
Page * 3

0x0800_5000

Application code/data/heap

Page * 2

0x8000_0000

Application stack

Page * 256

0x8000_4000

Memory buffer

Operating system code/data/heap/stack is in other memory regions.
For example, consider your thread_create() and thread_yield() in P1.

RUNNING and RUNNABLE processes

Page * 2

Page * 3

All pages of all RUNNABLE processes

0x0800_5000

0x8000_0000

0x8000_4000

code/data/heap of the RUNNING process

stack of the RUNNING process

Memory buffer

Additional step in create()

Page * 2

Page * 3

All pages of all RUNNABLE processes

0x0800_5000

0x8000_0000

0x8000_4000

Memory buffer

Find 5 free pages in the memory buffer
and load the code/data of the new process.

Additional step #1 in yield()

Page * 2

Page * 3

All pages of all RUNNABLE processes

0x0800_5000

0x8000_0000

0x8000_4000

Memory buffer

Write these 5 pages to the memory buffer.

Additional step #2 in yield()

Page * 2

Page * 3

All pages of all RUNNABLE processes

0x0800_5000

0x8000_0000

0x8000_4000

Memory buffer

Load the 5 pages of another
process from the memory buffer.

Software TLB summary
• Dedicated memory regions for user application.

• 3 for code/data/heap + 2 for stack

• Comparing to the multi-threading in P1,

• create() allocates and initializes memory pages for the
code/data/heap of the process, in addition to stack

• yield() moves memory pages between the dedicated
regions (RUNNING) and the memory buffer (RUNNABLE)

Memory Management
• Hello World

• Why translation?

• Case study: software TLB in egos

• Why protection?

• Case study: physical memory protection (PMP)

• Combining the two: page table and virtual memory

RUNNING process should not access the buffer

Page * 2

Page * 3

RUNNING process cannot access

0x0800_5000

0x8000_0000

0x8000_4000

RUNNING process can access

Memory buffer

RUNNING process can access

❌

Introducing privilege levels
• Machine mode can access all memory regions.

• User mode can only access regions that are allowed by the
machine mode.

• Machine mode specify these regions and permissions.

• Permissions are usually readable / writable / executable.

Machine mode specifies user permissions

Page * 2

Page * 3

-/-/- (no access at all)

0x0800_5000

0x8000_0000

0x8000_4000

code: r/-/x rodata: r/-/- data: r/w/- heap: r/w/-

Memory buffer

stack: r/w/-

Memory Management
• Hello World

• Why translation?

• Case study: software TLB in egos

• Why protection?

• Case study: physical memory protection (PMP)

• Combining the two: page table and virtual memory

Physical memory protection (PMP)
• Read section 3.6 of the RISC-V manual

• There are 16 address CSRs and 4 config CSRs

• pmpaddr0 … pmpaddr15 + pmpcfg0 … pmpcfg3

• For example, TOR means “top of region”:

/* Setup PMP TOR region 0x00000000 - 0x08008000 as r/w/x */
asm("csrw pmpaddr0, %0" :: "r" (0x08008000));
asm("csrw pmpcfg0, %0" :: "r" (0xF));

Memory Management
• Hello World

• Why translation?

• Case study: software TLB in egos

• Why protection?

• Case study: physical memory protection (PMP)

• Combining the two: page table and virtual memory

Page table and virtual memory
• Achieve the same goals as PMP + software TLB.

• In P3, page table translation is left to you as an open-ended
hobby project, not graded.

• Again, the goal of 4411 is to have fun.

• There are 29 lines of code setting up some example page
tables in egos-2000. See the handout for details.

Homework
• P3 will be due on Nov 4. You will implement

• system call, memory protection and exception handling

• Next lecture: I/O bus and device driver

