Memory Management:
Translation and Protection

Memory Management

= Hello World
 Why translation?
» Case study: software TLB in egos
 Why protection?
e Case study: physical memory protection (PMP)

 Combining the two: page table and virtual memory

Recall hello-world from week#2

IIHHHHHIII
int str_len = 14;

1nt main() {

Heap
char* str = malloc(str_len);
memcpy(str, “Hello World!\n”, str_len); Data
pr'i ntf(“%s”) S'l:l") , Read-only data
return 0;

} Code

Base Top Attr. Description
0Xx0000_0000 | 6x0PO0_OFFF | RWX A | Debug
0x0000_1000 | Ox0000_1FFF | R XC | Mode Select
0X0000_2000 | OXx0000_2FFF Reserved
0x0000_3000 | 0x0000_3FFF | RWX A | Error Device
0X0000_4000 | OXO0000_FFFF Reserved
0x0001_0000 | 6x0001_1FFF [R XC | Mask ROM (8 KiB)
0x0001_2000 | OX0001_FFFF Reserved
0x0002_0000 | O0x0002_1FFF | R XC | OTP Memory Region
0x0002_2000 | OXxOO1F_FFFF Reserved
0x0200_0000 | 0x0200_FFFF | RW A | CLINT
0x0201_0000 | OXO7FF_FFFF Reserved
0x0800_0000 | 6x0800_1FFF | RWX A | E31 ITIM (8 KiB)
0x0800_2000 | OXOBFF_FFFF Reserved
0Xx0COO_0000 | OXOFFF_FFFF | RW A | PLIC
0x1000_0000 | 0x1000_OFFF | RW A | AON
0x1000_1000 | 0x1000_7FFF Reserved
0x1000_8000 | Ox1000_8FFF | RW A | PRCI
0x1000_9000 | 0x1000_FFFF Reserved
0x1001_0000 | 0x1001_OFFF | RW A | OTP Control
0x1001_1000 | 0x1001_1FFF Reserved
0x1001_2000 | 0x1001_2FFF | RW A | GPIO
0x1001_3000 | 0x1001_3FFF | RW A | UARTO
0x1001_4000 | 0x1001_4FFF | RW A | QSPIO
0x1001_5000 | 0x1001_5FFF | RW A | PWMO
0x1001_6000 | Ox1001_6FFF | RW A | 12C0
0x1001_7000 | 0x1002_2FFF Reserved
0x1002_3000 | 0x1002_3FFF | RW A | UART 1
0x1002_4000 | 0x1002_4FFF | RW A | SPI1
0x1002_5000 | 0x1002_5FFF | RW A | PWM 1
0x1002_6000 | 0x1003_3FFF Reserved
0x1003_4000 | Ox1003_4FFF | RW A | SPI 2
0x1003_5000 | 0x1003_5FFF | RW A | PWM 2
0x1003_6000 | OX1FFF_FFFF Reserved
0x2000_0000 | OX3FFF_FFFF | R XC | QSPI 0 Flash

(512 MiB)
0x4000_0000 | OX7FFF_FFFF Reserved
0x8000_0000 | Ox8000_3FFF | RWX A | E31 DTIM (16 KiB)

0x8000_4000

OXFFFF_FFFF

Reserved

Table 4: FE310-G002 Memory Map. Memory Attributes: R - Read, W - Write, X - Execute, C -
Cacheable, A - Atomics

Notes

Recall memory map from week#6

CPU debug @0000_0000

ignore this for building an OS

Device control @0200 0000

Boot ROM @2000_0000
Main memory @0x8000_0000

Before boot up

 Boot ROM holds code,
read-only data and data.

Hello-world

Boot ROM

Heap

Data

Read-only data Main memory

’ RIAVNET
3, BEEE gzasgE

|g§g?gg geggge COde
O

= G O O 0o

Boot up, step #1

 Boot ROM holds code,
read-only data and data.

Hello-world

e The first few instructions

setup the stack pointer.
Boot ROM

Heap

Data

Read-only data Main memory

Code

Boot up, step #2

 Boot ROM holds code,
read-only data and data.

Hello-world

e The first few instructions

setup the stack pointer.
Heap Boot ROM

 Copy data from ROM to
main memory.

Data

Read-only data \ Main memory

Code

After the 2-step boot up

e Boot ROM holds code, nstruction
read-only data and data. pointer ad Code

e The first few instructions Read-only data

setup the Boot ROM

 Copy data from ROM to

main memory. Main memory

* [he break pointer is Break pointer (brk)
saved as 8-byte In data. Stack pointer

Reading the code

* Boot ROM holds code, carth/earth. lds
read-only data and data.

e The first few instructions
earth/earth.S

setup the
 Copy data from ROM to earth/earth.c

main memory. & first 2 loops 1n main()
* [he break pointer Is earth/earth.lds

saved as 8-byte In data. & libc/malloc.c

Hello-world — Multi-threading

Code
Boot ROM

Read-only data

Data

Heap

Stack pointer of thread #1 up Main memory

Stack pointer of thread #2 up

-]
Stack pointer of thread #3 uj) E—————————

Memory Management

e Hello World

= \Why translation?
» Case study: software TLB in egos
 Why protection?
e Case study: physical memory protection (PMP)

 Combining the two: page table and virtual memory

Why translation?

* In P1, you write the code of every thread yourself.

* |n an operating system,

* (Google writes the code of Chrome

 Adobe writes the code of Photoshop

* An operating system provides the standard memory layout
specifying where to put code, stack, etc.

Low
Memory
Addresses

High
Memory
Addresses

0x00000000

0x00400000

0x7FFDF000

O0x7FFFFFFF

OxFFFFFFFF

Win32 Memory Map
(simplified)

Sta Ck Grows up
to lower
addresses

Grows do
H eap to higher
addresses

oram Image

Standard memory layout of win32

<= code, rodata and data of application

{I for dynamic library linking, out of today’s scope

< everything else, including the OS code and data

https://mikeczumak.com/blog/windows-exploit-development-part-1-basics/

Goal #1 of memory translation

Different threads have different Different processes have the same
stack address, code address, etc. stack address, code address, etc.

Goal #2 of memory translation

Different threads share the same Different processes have separate
code, data, heap regions. code, data and heap regions.

Memory Management

* Hello World
 Why translation?
=2 Case study: software TLB in egos
 Why protection?
e Case study: physical memory protection (PMP)

 Combining the two: page table and virtual memory

Case study: Software TLB

 Every memory page is 4KB (0x1000 bytes).
* For every application in egos-2000:

e 3 pages for code/rodata/data/heap
e 0Ox0800_5000 ... 0x0800_8000

e 2 pages for stack

e 0x8000_0000 ... 0x8000_2000

* |n addition, egos-2000 maintains a buffer of 256 pages (1 MB)

3 memory regions for Software TLB

Application code/data/heap

0x0800_5000

Application stack

0x8000_0000

Page * 256 Memory buffer

0x8000_4000

Operating system code/data/heap/stack is in other memory regions.
For example, consider your thread_create() and thread_yield() in P1.

RUNNING and processes

code/data/heap of the RUNNING process

0x0800_5000

stack of the RUNNING process

0x8000_0000

All pages of all RUNNABLE processes Memory buffer

0x8000_4000

Additional step in create()

0x0800_5000

Find 5 free pages in the memory buffer
and load the code/daa of the new process.

0x8000_0000

All pages of all RUNNABLE processes

Memory buffer

0x8000_4000

Additional step #1 in y1eld()

0x0800_5000

Write these 5 pages to the memory buffer.

0x8000_0000

All pages of all RUNNABLE processes

Memory buffer

0x8000_4000

Additional step #2 in y1eld()

0x0800_5000

Load the 5 pages of another
process from the memory buffer.

0x8000_0000

All pages of all RUNNABLE processes

Memory buffer

0x8000_4000

Software TLB summary

 Dedicated memory regions for user application.
e 3 for code/data/heap + 2 for stack
 Comparing to the multi-threading in P1,

» create() allocates and initializes memory pages for the
code/data/heap of the process, in addition to stack

* y1eld() moves memory pages between the dedicated
regions (RUNNING) and the memory buffer (RUNNABLE)

Memory Management

* Hello World
 Why translation”

» Case study: software TLB in egos

=2 \Why protection?
e Case study: physical memory protection (PMP)

 Combining the two: page table and virtual memory

RUNNING process should not access the buffer

RUNNING process can access

0x0800_5000

RUNNING process can access

0x8000_0000

RUNNING process cannot access Memory buffer

0x8000_4000

Introducing privilege levels

* Machine mode can access all memory regions.

 User mode can only access regions that are allowed by the
machine mode.

 Machine mode specify these regions and permissions.

* Permissions are usually readable / writable / executable.

Machine mode specifies user permissions

code: r/-/x rodata: r/-/- data: r/w/- heap: r/w/-

0x0800_5000

stack: r/w/ -

0x8000_0000

-/-/- (no access at all) Memory buffer

0x8000_4000

Memory Management

* Hello World
 Why translation?
» Case study: software TLB in egos
 Why protection?
=2 Case study: physical memory protection (PMP)

 Combining the two: page table and virtual memory

Physical memory protection (PMP)

 Read section 3.6 of the RISC-V manual
* There are 16 address CSRs and 4 config CSRs
e pmpaddr@ ... pmpaddrl5 + pmpcfg@ ... pmpctg3

* For example, TOR means “top of region”:

/* Setup PMP TOR region 0x00000000 - 0x08008000 as r/w/x */
asm("csrw pmpaddr@, %0" :: "r" (0x08008000));
asm("csrw pmpcfgd, %" :: "r" (OxF));

Memory Management

* Hello World
 Why translation?
» Case study: software TLB in egos
 Why protection?
e Case study: physical memory protection (PMP)

= Combining the two: page table and virtual memory

Page table and virtual memory

* Achieve the same goals as PMP + software TLB.

* In P3, page table translation is left to you as an open-ended
hobby project, not graded.

* Again, the goal of 4411 is to have fun.

* There are 29 lines of code setting up some example page
tables in egos-2000. See the handout for details.

Homework

* P3 will be due on Nov 4. You will implement
e system call, memory protection and exception handling

e Next lecture: I/O bus and device driver

