System Call

System call is the interface between
users and the OS for system services.

Case study: EGOS system call

*» Define data structures
* Invoke a system call in an application

 Handle a system call in the OS kernel

Defining data structures

struct syscall { enum syscall_type {
enum syscall type type; SYS_UNUSED,
struct sys_msg msg; SYS_RECV,
int retval; SYS SEND,

}: SYS NCALLS

b

There are only 2 system calls struct sys_msg 1

in EGOS: send and receive int sender;

messages between processes. int receiver:

char content [SYSCALL MSG LEN];
b

Case study: EGOS system call

e Define data structures

=2 Invoke a system call in an application

 Handle a system call in the OS kernel

Review: CPU support for interrupts

FE310-G002 Interrupt Architecture
AON 2 > Machine External Interrupt——p
2X UART 2 |
3x QSP! 3
GPIO 32 g PLIC 3t f
thilily > ypes O E31
3x PWM e interrupts
12C 1 > A RISC-V core
Machine Software Interrupt—p»
CLI NT Machine Timer Interrupt——p

Page 38 of Sifive FE310 manual, vi9p04
https://github.com/yhzhang0128/egos-2000/blob/timer_example/references/sifive-fe310-v19p04.pdf

CLINT: Core-Local Interrupt

Address | Width | Attr. Description
Software ==| 0x2000000 | 4B | RW [msip for hart 0

Ox2004008 Reserved
OX200bff7

/ Ox2004000 8B RW | mtimecmp for hart O
Ox2004008 Reserved

Timer

\ OX200bFf7
OX200bf T8 3B RW | mtime
OXx200cO00 Reserved

Page 38 of Sifive FE310 manual, vi9p04
https://github.com/yhzhang0128/egos-2000/blob/timer_example/references/sifive-fe310-v19p04.pdf

Invoking 575 _SEND step#1

static struct syscall *sc = (struct syscall*)SYSCALL_ARG;

4

static void sys_invoke() { OS and user application agree
¥*((1nt*)0Ox2000000) = 1; on a memory address for the
} system call data structure.

int sys_send(int receiver, char* msg, int size) {
1f (si1ze > SYSCALL_MSG_LEN) return -1;

sc->type = SYS_SEND;
SC->MmMsg.receiver = receiver;
memcpy(sc->msg.content, msg, size);
sys_invoke();

return sc->retval;

Invoking 575 _5SEND step#2

static struct syscall *sc = (struct syscall*)SYSCALL_ARG;

static void sys_invoke() {
((1nt)0Ox2000000) = 1;

§

// The sys_send function takes 3 parameters

int sys_send(int receiver, char* msg, int size) {
1f (si1ze > SYSCALL_MSG_LEN) return -1;

sc->type = SYS_SEND;
SC->MmMsg.receiver = receiver;
memcpy(sc->msg.content, msg, size);
sys_invoke();

return sc->retval;

Invoking step#3

static struct syscall *sc = (struct syscall*)SYSCALL_ARG;

static void sys_invoke() {
((1nt)0x2000000) = 1;
§

int sys_send(int receiver, char* msg, int size) {
1f (size > SYSCALL_MSG_LEN) return -1;
// Prepare the system call data structure
sc->type = SYS_SEND;
SC->msg.receiver = receiver;
memcpy(sc->msg.content, msg, size);
sys_invoke();
return sc->retval;

Invoking step#4

static struct syscall *sc = (struct syscall*)SYSCALL_ARG;

static void sys_invoke() {
=1;

((1nt)0Ox2000000) // Trigger a software interrupt

¥

int sys_send(int receiver, char* msg, int size) {
1f (size > SYSCALL_MSG_LEN) return -1;

sc->type = SYS_SEND;
SC->MmMsg.receiver = receiver;
memcpy(sc->msg.content, msg, size);
sys_1invoke();

return sc->retval;

Case study: EGOS system call

e Define data structures

* Invoke a system call in an application

= Handle a system call in the OS kernel

Software interrupt is #3

Interrupt Exception Codes

Interrupt Exception Code | Description

0-2 | Reserved

3 | Machine software interrupt

4-6 | Reserved

7/ | Machine timer interrupt

8-10 | Reserved

11 | Machine external interrupt

o L Ll L Ul e

> 12 | Reserved

Page 42 of Sifive FE310 manual, vi9p04
https://github.com/yhzhang0128/egos-2000/blob/timer_example/references/sifive-fe310-v19p04.pdf

Review: kernel ~ 3 handlers

void kernel() {
1nt mcause;
__asm__ volatile("csrr %0, mcause" : "=r"(mcause));

1nt 1d = mcause & Ox3ff;
1f (mcause & (1 << 31)) {

1f (1d == 3) { syscall_handler(); }

1f (1d == 7) { timer_handler(); } // scheduler
} else {

fault_handler();

¥

syscall_handler for

* Possibility #1 (blocking)
» \Wait until the receliver calls sys_recv()
o Similar to the wait in P1’s semaphore implementation
* Possibility #2 (non-blocking)
 Maintain a message queue in TCB (i.e., struct process)

 Add the message to recelver’s message queue and return

EGOS case study summary

* Define data structures
 ~16 lines in grass/syscall.h
* |Invoke a system call in an application
e ~32 lines in grass/syscall.c
 Handle a system call in the OS kernel

 ~75 lines in grass/scheduler.c

Homework

e P3 has been released on CMSx.

o Software interrupt is NOT the usual way of invoking
system call and there is a special ecal L instruction.

* You will Implement this usual way in P3.

Understanding ecall

=» Review RISC-V function call

* Review Iinterrupt handler call

e Understand the RISC-V instruction ecall

Function call step#1

<main>:

Store caller-saved registers on the stack

<printf>:

Function call step#2

<main>:

Store caller-saved registers on the stack
Call printf (set ra to the address of =»)

<printf>:

Function call step#3

<main>:

Store caller-saved registers on the stack
Call printf (set ra to the address of =»)

<printf>:
Store callee-saved registers on the stack

Function call step#4

<main>:

Store caller-saved registers on the stack
Call printf (set ra to the address of =»)

<printf>:
Store callee-saved registers on the stack

Restore callee-saved registers

Function call step#5

<main>:

Store caller-saved registers on the stack
Call printf (set ra to the address of =»)

<printf>:
Store callee-saved registers on the stack

Restore callee-saved registers
Return to main() (set pc to ra)

Function call step#6

<main>:

Store caller-saved registers on the stack
Call printf (set ra to the address of =»)
Restore caller-saved registers

<printf>:
Store callee-saved registers on the stack

Restore callee-saved registers
Return to main() (set pc to ra)

Understanding ecall

e Review RISC-V function call

*» Review interrupt handler call

e Understand the RISC-V instruction ecall

Problem #1
If an interrupt happens during main(),

the compiler didn’t know about it.

.e., compiler cannot store/resume registers with the main() stack.

Address problem #1

<some user function>:

Store—callter-savedregisters—on—the stack
Call handler (set ra to the address of =»)
Restore—callter—saved—registers

<handler>:
Store all registers on the stack

Restore all registers
Return to some_user_function() with ra

Problem #2
How to restore the value of ra?

The problem is explained with 2 bullets in the next slide.

How to restore the value of ra?

<some user function>:

Store—caller-savedregisters—on—the stack
Call handler (set ra to the address of =»)
Restore—calter-saved—registers

4

2. Previously, the ra register was restored here.

<handler>:
Store all registers on the stack

Restore all registers
Return to some_user_function() with ra

4

1. The ra register is needed here for ret.

Address problem #2: the mepc CSR

<some user function>:

Store—caller-savedregisters—on—the stack
Call handler (set mepc to the address of =»)
Restore—calter-saved—registers

<handler>:
Store all registers on the stack

Restore all registers, including the ra register
Return to some_user_function() with mepc

Understanding ecall

e Review RISC-V function call

* Review Iinterrupt handler call

=» Understand the RISC-V instruction ecall

Call handler with a special instruction

<some user function>:

ecall // Triggers an exception, CPU calls handler

<handler>:

// handle the system call
// set mepc+=4, 1.e, the 1nstruction after ecall
mret // return to some user function with mepc

Summary of ecall

* Review RISC-V function call
* separating caller-saved and callee-saved registers
* Review interrupt handler call
* address problem #1: save all registers on the callee stack

e address problem #2: use mepc + mret instead of ra + ret
 Understand the RISC-V instruction ecal L

e a special instruction triggering an exception as system call

Note
We haven't talked about privilege levels:
It Is possible to provide system services
without protection.

And we will talk about protections next week.

Homework

* P3 has been released on CMSxX.
* You will implement
e system call, memory protection and exception handling
* We give one RISC-V board to each team, see post on Ed.

* Next lecture: memory protection and translation

