Put Projects P0O-P2 Together

— the first 3 steps of building an operating system

Step1-3 of building an OS

=% Step #1: understand computer architecture

* memory and context
* function call and calling convention
o Step #2: understand interrupt and exception

o Step #3: understand context-switch and multi-threading

Before building an OS, you have

B

Hardware
documents

_—

Computer

Two important documents

From the CPU vendor From the computer vendor

What are the registers and
Instructions supporting an
operating system?

How to control devices?

Required reading

* A reading assignment is released on CMSx
* RISC-V and SiFive documents

* because they are simpler and shorter than Intel/Dell

A 4 . ,b

A4 @ SiFive
N S

Chapter4 of

IIIIIII1

IS memory map

Base Top Attr. Description Notes
0Xx0000_0000 | 6x0PO0_OFFF | RWX A | Debug |
0x0000_1000 | Ox0000_1FFF | R XC | Mode Select
0x0000_2000 | 0x0000_2FFF Reserved C P U d b O O O O O O O O
0x0000_3000 | 0x0000_3FFF | RWX A | Error Device e u g
OXx0000_4000 | OXO000_FFFF Reserved -
0x0001_0000 | Ox0001_1FFF | R XC | Mask ROM (8 KiB) " " . n
0x0001_2000 | OX0001_FFFF Reserved (I g n O re th IS fO r b u I Id I n g a n OS)
0x0002_0000 | O0x0002_1FFF | R XC | OTP Memory Region
0x0002_2000 | OXO01F_FFFF Reserved
0x0200_0000 | 0x0200_FFFF | RW A | CLINT
0x0201_0000 | OXO7FF_FFFF Reserved
0x0800_0000 | 6x0800_1FFF | RWX A | E31 ITIM (8 KiB)
0x0800_2000 | OXOBFF_FFFF Reserved
0Xx0COO_0000 | OXOFFF_FFFF | RW A | PLIC
0x1000_0000 | 6x1000_0FFF | RWw A | AON
0x1000_1000 | 0x1000_7FFF Reserved
0x1000_8000 | 6x1000_8FFF [RWw A | PRCI
0x1000_9000 | 0x1000_FFFF Reserved
0x1001_0000 | 0x1001_OFFF | RW A | OTP Control
0x1001_1000 | 0x1001_1FFF Reserved
0x1001_2000 | 0x1001_2FFF | RW A | GPIO "
oxsoos s000 | ovtoor srrr | Ri— A TUART Device control @0200 0000
0x1001_4000 | 0x1001_4FFF | RW A | QSPIO —_—
0x1001_5000 | 0x1001_5FFF | RW A | PWMO
0x1001_6000 | 6x1001_6FFF [RW A | 12CO
0x1001_7000 | 0x1002_2FFF Reserved
0x1002_3000 | 6x1002_3FFF | RWw A | UART 1
0x1002_4000 | 0x1002_4FFF | RW A | SPI1
0x1002_5000 | 0x1002_5FFF | RW A | PWM 1
0x1002_6000 | 0x1003_3FFF Reserved
0x1003_4000 | Ox1003_4FFF | RW A | SPI 2
0x1003_5000 | 0x1003_5FFF | RW A | PWM 2
0x1003_6000 | OX1FFF_FFFF Reserved
0x2000_0000 | OX3FFF_FFFF | R XC | QSPI 0 Flash

Boot ROM @2000_0000

0x4000_0000 | OX7FFF_FFFF Reserved —
0x8000_0000 | Ox8000_3FFF | RWX A | E31 DTIM (16 KiB) ‘ .
0x8000_4000 | OXFFFF_FFFF Reserved I\/I al n I I Iel I lO ry @ OX80 O O O O O O

Table 4: FE310-G002 Memory Map. Memory Attributes: R - Read, W - Write, X - Execute, C -
Cacheable, A - Atomics

(main memory <2GB in this architecture)

provides a hello world

R OC
‘ . "Hello World”

Step#1: compile Step#2: copy the
the hello-world compiled code to
program in Linux the boot ROM

with special tools
provided by SiFive

CPU debug

Device control

Boot ROM
Main memory

Enter the context of hello world

Step#3: press the CPU debug

boot button on the
computer

Device control

Step#4: CPU set
Instruction pointer

to the beginning of — _
boot ROM Step#5: an 11 instruction

sets the stack pointer to
main memory

Boot ROM
Main memory

hello-world prints to screen

CPU debug
Step#8: the screen
shows “Hello World!” @

Step#7: during printf(),
store Instructions will send
data to the screen

Device control

Step#6: a call
instruction calls main()
which calls printf()

Boot ROM
Main memory

Step1-3 of building an OS

=% Step #1: understand computer architecture

4 memory and context
* function call and calling convention
o Step #2: understand interrupt and exception

o Step #3: understand context-switch and multi-threading

Calling convention in RISC-V

Register | ABI Name | Description

x0 Zero Hard-wired zero

x1 ra Return address

X2 Sp Stack pointer

x3 gp Global pointer

x4 tp Thread pointer |
x5 t0 Temporary/alternate link register §
xX6—7 t1-2 Temporaries
X8 s0/fp Saved register /frame pointer

x9 s1 Saved register i
x10-11 | a0-1 Function arguments/return valuesf
x12-17 | a2-7 Function arguments |
x18-27 | s2—-11 Saved registers

x28-31 | t3-6 Temporaries

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

Page 137, table 25.1 of RISC-V manual, volume1

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

Function call step#1

<main>:

Store caller-saved registers on the stack

<printf>:

Function call step#2

<main>:

Store caller-saved registers on the stack
Call printf (set ra to the address of =»)

<printf>:

Function call step#3

<main>:

Store caller-saved registers on the stack
Call printf (set ra to the address of =»)

<printf>:
Store callee-saved registers on the stack

Function call step#4

<main>:

Store caller-saved registers on the stack
Call printf (set ra to the address of =»)

<printf>:
Store callee-saved registers on the stack

Restore callee-saved registers

Function call step#5

<main>:

Store caller-saved registers on the stack
Call printf (set ra to the address of =»)

<printf>:
Store callee-saved registers on the stack

Restore callee-saved registers
Return to main() (set pc to ra)

Function call step#6

<main>:

Store caller-saved registers on the stack
Call printf (set ra to the address of =»)
Restore caller-saved registers

<printf>:
Store callee-saved registers on the stack

Restore callee-saved registers
Return to main() (set pc to ra)

Step1-3 of building an OS

=% Step #1: understand computer architecture

4 memory and context
t4 function call and calling convention
o Step #2: understand interrupt and exception

o Step #3: understand context-switch and multi-threading

Can we do more than hello world?

Yes, add a simple timer handler.

Step1-3 of building an OS

o Step #1: understand computer architecture
= Step #2: understand interrupt and exception
» control and status registers (CSR)
* inserting a call to the handler function

o Step #3: understand context-switch and multi-threading

Control and status registers (CSR)

* There are many registers other than the 32 user-level ones:
e misa: 32-bit or 64-bit?
e mhartid: the core ID number

e mstatus: the machine status

e mtvec, mie, mtime, mtimecmp: interrupt handling

Recap: timer interrupt

 How to register an interrupt handler?

* write the address of handler function to mtvec
* How to set a timer?

e write (mtime + quantum) to mtimecmp
 How to enable timer interrupt??

e set certain bit of mstatus and mie to 1

int quantun - so000; R@CAP: @ timer handler program

volid handler() {
earth->tty_info("Got timer interrupt.");
mtimecmp_set(mtime_get() + quantum); - Set a timer

¥

int main() {
earth->tty_success("A timer interrupt example.");

asm("csrw mtvec, %0" ::"r"(Chandler)); - Register handler
mtimecmp_set(mtime_get() + quantum); -« Set a timer

1nt mstatus, mie;

asm("csrr %0, mstatus" : "=r"(mstatus));

asm("csrw mstatus, %0" ::"r"(mstatus | Ox8)); _ _
asm("csrr %0, mie" : "=r"(mie)); Enable timer interrupt
asm("csrw mie, %0" ::"r"(mie | Ox80));

while(l);

Question
How does the RISC-V processor
Insert a call to the handler function?

Recall the main-printf example

<some user function>: // 1nstead of main()

Store caller-saved registers on the stack
Call handler (set ra to the address of =»)
Restore caller-saved registers

<handler>: // 1nstead of printf()
Store callee-saved registers on the stack

Restore callee-saved registers
Return to some_user_function() with ra

Intuition: CPU inserts these code

<some user function>:

Store caller-saved registers on the stack
Call handler (set ra to the address of =»)
Restore caller-saved registers

<handler>:
Store callee-saved registers on the stack

Restore callee-saved registers
Return to some_user_function() with ra

Cleanup these code

<some user function>:

Store—callter-savedregisters—on—the stack
Call handler (set ra to the address of =»)
Restore—callter—saved—registers

<handler>:
Store all registers on the stack

Restore all registers
Return to some_user_function() with ra

Handler returns to the same context

<some user function>:

Call handler (set ra to the address of =»)
<handler>:

Store all registers on the stack

Restore all registers
Return to some_user_function() with ra

Question
How does the handler function switch
to the context to a different thread?

First, replacing ra with CSR mepcC

<some user function>:
// mepc: machine exception program counter
Call handler (set mepc to the address of =p)
<handler>:

Store all registers on the stack

Restore all registers
Return to some_user_function() with mepc

Then, switch context with mepcC

<some user function>:

Call handler (set mepc to the address of =»)

<handler>:
Store all registers on the stack

Set mepc to the code section of another thread
Restore all registers
Switch to another thread with mepc

Brief summary

* The interrupt handler function
e Stores all register on stack, instead of callee-saved

 Uses mret and mepc instead of ret and ra

* This is why, In the demo code, there Is one line:

® void handler() __attribute__((interrupt));

 telling the compiler this function is an interrupt hander

A demo using mepc and mret

void threadd() { while(l) { // print something green } }
vold O { while(1l) { // } }

1nt next_thread = 0;
vold handler() {
next_thread = 1 - next_thread;

asm("csrw mepc, %0" ::"r"((next_thread == 0)? threadd :));
mtimecmp_set(mtime_get() + quantum); // reset timer
asm("1l1 sp, Ox80002000”); // set stack pointer
asm(“mret”); // forget previous thread and start a new thread

Demo on a RISC-V board

https://github.com/yhzhang0128/egos-2000/tree/timer_example/grass

demo code in microSD card

TETd o ([TAadee

—

GND VCC O

earth layer code in boot ROM s - ,
1. Load demo from microSD . <, ADIGILENT. i

- = " _— | csagol‘ﬂc:‘ai ‘e % A ci_Rsv |

2. Print strings to the screen serial TTY N | SiFive FE310 |
=i 4| RISC-V CPU |

o e &

Step1-3 of building an OS

o Step #1: understand computer architecture
= Step #2: understand interrupt and exception
£4 control and status registers (CSR)
W inserting a function call to the handler

o Step #3: understand context-switch and multi-threading

Can we do more than timer handler?

Yes, add thread init/create/switch/exit just like P1.

Step1-3 of building an OS

o Step #1: understand computer architecture

o Step #2: understand interrupt and exception

=2 Step #3: understand context-switch and multi-threading
* skipped In this lecture since you just finished P1

* read the grass kernel (358 lines of code)

e https://github.com/yhzhang0128/egos-2000/tree/main/grass

https://github.com/yhzhang0128/egos-2000/tree/main/grass

Homework

* Read

e the two CPU documents posted on CMSx

* the 358 lines of code mentioned in the previous slide
* P2 is due on Oct 12.

* No class on Oct. 7 — enjoy your fall break.

After the fall break

e CS4411 has 12 lectures and we have finished half.

o Step #1: understand computer architecture

o Step #2: understand interrupt and exception

e Step #3: understand context-switch and multi-threading
o Step #4: understand privilege levels

o Step #5: understand |/O devices

o Step #6: understand file systems

