
Put Projects P0-P2 Together
— the first 3 steps of building an operating system

• Step #1: understand computer architecture

• memory and context

• function call and calling convention

• Step #2: understand interrupt and exception

• Step #3: understand context-switch and multi-threading

Step1-3 of building an OS

Before building an OS, you have

Computer Hardware
documents

Two important documents

From the CPU vendor From the computer vendor

What are the registers and
instructions supporting an

operating system?

How to control devices?

Required reading
• A reading assignment is released on CMSx

• RISC-V and SiFive documents

• because they are simpler and shorter than Intel/Dell

Chapter4 of is memory map

CPU debug @0000_0000

(ignore this for building an OS)

Device control @0200_0000

Boot ROM @2000_0000
Main memory @0x8000_0000

(main memory 2GB in this architecture)≤

 provides a hello world

Step#1: compile
the hello-world

program in Linux

CPU debug

Device control

Boot ROM
Main memory

with special tools
provided by SiFive

Step#2: copy the
compiled code to

the boot ROM

Enter the context of hello world

Step#3: press the
boot button on the

computer

CPU debug

Device control

Boot ROM
Main memory

Step#4: CPU set
instruction pointer
to the beginning of

boot ROM Step#5: an li instruction
sets the stack pointer to

main memory

hello-world prints to screen

CPU debug

Device control

Boot ROM
Main memory

Step#6: a call
instruction calls main()
which calls printf()

Step#7: during printf(),
store instructions will send

data to the screen

Step#8: the screen
shows “Hello World!”

• Step #1: understand computer architecture

• memory and context

• function call and calling convention

• Step #2: understand interrupt and exception

• Step #3: understand context-switch and multi-threading

Step1-3 of building an OS

✅

Calling convention in RISC-V

Page 137, table 25.1 of RISC-V manual, volume1
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

main()
printf()

main()
main()
printf()
printf()

printf()

main()
main()

main()

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

Function call step#1
<main>:
 . . .
 Store caller-saved registers on the stack
 Call printf (set ra to the address of)
 Restore caller-saved registers
 . . .

<printf>:
 Store callee-saved registers on the stack
 . . .
 Restore callee-saved registers
 Return to main() (set pc to ra)

Function call step#2
<main>:
 . . .
 Store caller-saved registers on the stack
 Call printf (set ra to the address of)
 Restore caller-saved registers
 . . .

<printf>:
 Store callee-saved registers on the stack
 . . .
 Restore callee-saved registers
 Return to main() (set pc to ra)

Function call step#3
<main>:
 . . .
 Store caller-saved registers on the stack
 Call printf (set ra to the address of)
 Restore caller-saved registers
 . . .

<printf>:
 Store callee-saved registers on the stack
 . . .
 Restore callee-saved registers
 Return to main() (set pc to ra)

Function call step#4
<main>:
 . . .
 Store caller-saved registers on the stack
 Call printf (set ra to the address of)
 Restore caller-saved registers
 . . .

<printf>:
 Store callee-saved registers on the stack
 . . .
 Restore callee-saved registers
 Return to main() (set pc to ra)

Function call step#5
<main>:
 . . .
 Store caller-saved registers on the stack
 Call printf (set ra to the address of)
 Restore caller-saved registers
 . . .

<printf>:
 Store callee-saved registers on the stack
 . . .
 Restore callee-saved registers
 Return to main() (set pc to ra)

Function call step#6
<main>:
 . . .
 Store caller-saved registers on the stack
 Call printf (set ra to the address of)
 Restore caller-saved registers
 . . .

<printf>:
 Store callee-saved registers on the stack
 . . .
 Restore callee-saved registers
 Return to main() (set pc to ra)

• Step #1: understand computer architecture

• memory and context

• function call and calling convention

• Step #2: understand interrupt and exception

• Step #3: understand context-switch and multi-threading

Step1-3 of building an OS

✅

✅

Can we do more than hello world?
Yes, add a simple timer handler.

• Step #1: understand computer architecture

• Step #2: understand interrupt and exception

• control and status registers (CSR)

• inserting a call to the handler function

• Step #3: understand context-switch and multi-threading

Step1-3 of building an OS

Control and status registers (CSR)

• There are many registers other than the 32 user-level ones:

• misa: 32-bit or 64-bit?

• mhartid: the core ID number

• mstatus: the machine status

• mtvec, mie, mtime, mtimecmp: interrupt handling

Recap: timer interrupt
• How to register an interrupt handler?

• write the address of handler function to mtvec

• How to set a timer?

• write (mtime + quantum) to mtimecmp

• How to enable timer interrupt?

• set certain bit of mstatus and mie to 1

int quantum = 50000;

void handler() {
 earth->tty_info("Got timer interrupt.");
 mtimecmp_set(mtime_get() + quantum);
}

int main() {
 earth->tty_success("A timer interrupt example.");

 asm("csrw mtvec, %0" ::"r"(handler));
 mtimecmp_set(mtime_get() + quantum);

 int mstatus, mie;
 asm("csrr %0, mstatus" : "=r"(mstatus));
 asm("csrw mstatus, %0" ::"r"(mstatus | 0x8));
 asm("csrr %0, mie" : "=r"(mie));
 asm("csrw mie, %0" ::"r"(mie | 0x80));

 while(1);
}

Recap: a timer handler program

Register handler
Set a timer

Set a timer

Enable timer interrupt

Question

How does the RISC-V processor

insert a call to the handler function?

Recall the main-printf example
<some user function>: // instead of main()
 . . .
 Store caller-saved registers on the stack
 Call handler (set ra to the address of)
 Restore caller-saved registers
 . . .

<handler>: // instead of printf()
 Store callee-saved registers on the stack
 . . .
 Restore callee-saved registers
 Return to some_user_function() with ra

Intuition: CPU inserts these code
<some user function>:
 . . .
 Store caller-saved registers on the stack
 Call handler (set ra to the address of)
 Restore caller-saved registers
 . . .

<handler>:
 Store callee-saved registers on the stack
 . . .
 Restore callee-saved registers
 Return to some_user_function() with ra

Cleanup these code
<some user function>:
 . . .
 Store caller-saved registers on the stack
 Call handler (set ra to the address of)
 Restore caller-saved registers
 . . .

<handler>:
 Store all registers on the stack
 . . .
 Restore all registers
 Return to some_user_function() with ra

Handler returns to the same context

<some user function>:
 . . .
 Call handler (set ra to the address of)
 . . .

<handler>:
 Store all registers on the stack
 . . .
 Restore all registers
 Return to some_user_function() with ra

Question

How does the handler function switch
to the context to a different thread?

First, replacing ra with CSR mepc
<some user function>:
 . . .
 // mepc: machine exception program counter
 Call handler (set mepc to the address of)
 . . .

<handler>:
 Store all registers on the stack
 . . .
 Restore all registers
 Return to some_user_function() with mepc

Then, switch context with mepc
<some user function>:
 . . .
 Call handler (set mepc to the address of)
 . . .

<handler>:
 Store all registers on the stack
 . . .
 Set mepc to the code section of another thread
 Restore all registers
 Switch to another thread with mepc

Brief summary
• The interrupt handler function

• Stores all register on stack, instead of callee-saved

• Uses mret and mepc instead of ret and ra

• This is why, in the demo code, there is one line:

• void handler() __attribute__((interrupt));

• telling the compiler this function is an interrupt hander

A demo using mepc and mret
void thread0() { while(1) { // print something green } }
void thread1() { while(1) { // print something yellow } }

int next_thread = 0;
void handler() {
 next_thread = 1 - next_thread;
 asm("csrw mepc, %0" ::"r"((next_thread == 0)? thread0 : thread1));

 mtimecmp_set(mtime_get() + quantum); // reset timer
 asm("li sp, 0x80002000”); // set stack pointer
 asm(“mret”); // forget previous thread and start a new thread
}

Demo on a RISC-V board

demo code in microSD card

https://github.com/yhzhang0128/egos-2000/tree/timer_example/grass

earth layer code in boot ROM
 1. Load demo from microSD
 2. Print strings to the screen

• Step #1: understand computer architecture

• Step #2: understand interrupt and exception

• control and status registers (CSR)

• inserting a function call to the handler

• Step #3: understand context-switch and multi-threading

Step1-3 of building an OS

✅

✅

Can we do more than timer handler?
Yes, add thread init/create/switch/exit just like P1.

• Step #1: understand computer architecture

• Step #2: understand interrupt and exception

• Step #3: understand context-switch and multi-threading

• skipped in this lecture since you just finished P1

• read the grass kernel (358 lines of code)

• https://github.com/yhzhang0128/egos-2000/tree/main/grass

Step1-3 of building an OS

https://github.com/yhzhang0128/egos-2000/tree/main/grass

Homework
• Read

• the two CPU documents posted on CMSx

• the 358 lines of code mentioned in the previous slide

• P2 is due on Oct 12.

• No class on Oct. 7 — enjoy your fall break.

• CS4411 has 12 lectures and we have finished half.

• Step #1: understand computer architecture

• Step #2: understand interrupt and exception

• Step #3: understand context-switch and multi-threading

• Step #4: understand privilege levels

• Step #5: understand I/O devices

• Step #6: understand file systems

After the fall break

