
Welcome to CS4411/5411

Practicum in Operating Systems

"What I cannot create, I do not understand.”

— Richard Feynman

Course staff

Justin Lee and Oliver Matte

I wish to bring you the fun of
building operating systems.

How to have fun?
• No exam

• No textbook

• 6 coding projects

• the last one is optional

• 3 running on Linux/Mac

• 3 running on a RISC-V board

• More about these later

Communications
• Website:

• https://www.cs.cornell.edu/courses/cs4411/2022fa/

• CMSx

• distribute projects; submit solutions

• Ed Discussion

• For time-sensitive matters: cs4411-staff@cornell.edu

• For sensitive matters: cs4411-prof@cornell.edu

mailto:cs4411-staff@cornell.edu
mailto:cs4411-prof@cornell.edu

Teamwork
• P0: individually

• P1-P5: teams of 2-3 students

• real-world softwares are built by teams

• learn how to collaborate, trust and respect

• P1 will be released on Sep 9

• two-week time to find teammates

Slip days
• No penalty

• 2 per project, 5 in total

• If you need any accommodation, let us know.

Academic Integrity
• Each team has one submission.

• Do not share code with other teams.

• All submitted code must be your own.

• Put your code in *private* repositories.

• Violations will be prosecuted.

Grading
• No “curve”

• CS4411/5411 is not a competition.

• Final grade is a weighted sum of all the projects.

Project Weight Project Weight

P0 1 P1 2

P2 2 P3 2

P4 3 P5 0

Any questions?

Next, demo time.

OS, big and small
• Earth and Grass Operating System (EGOS)

• written by Robbert van Renesse

• with rich functionalities: a compiler inside!

• EGOS-2000

• written by Yunhao Zhang

• https://github.com/yhzhang0128/egos-2000

• with very few lines of code: only 2000 in total!

https://github.com/yhzhang0128/egos-2000

Learning tips
• Earth and Grass Operating System (EGOS)

• with very rich functionalities

• Try to explore what functionalities an OS could have

• EGOS-2000

• with very few lines of code

• Try to read every line of code

What? Lines of Code (LOC)

SD card driver 222

Exception Handling 48

Memory Management 106

Kernel (scheduler + syscall) 358

File System 339

Applications 264

Library 262

Makefile 54

Board-specific tools 172

Other 175

Read

every

line of

code?

What? Lines of Code (LOC) Projects

SD card driver 222 P5 (optional)

Exception Handling 48 P3

Memory Management 106 P3

Kernel (scheduler + syscall) 358 P0, P1, P2

File System 339 P4

Applications 264 P3

Library 262 P3

Makefile 54

Board-specific tools 172

Other 175

High-level Keywords
• P0

• memory and pointer

• instead of object and reference in Java or Python

• P1

• context, thread and context-switch

• P2

• timer interrupt, scheduling and priority

High-level Keywords
• P3

• privilege level/mode

• control and status registers (CSR)

• memory exceptions and system call

• P4

• layering design: inode layer and directory layer

• P5

• I/O bus and memory-mapped bus controller

More fun after this semester
• Future work #1

• A minimal RISC-V processor that can run egos-2000

• Thanks to Ted Yin and Adrian Sampson

Picture from: https://github.com/Determinant/mriscv

More fun after this semester
• Future work #2

• Graphic User Interface

Picture from: https://digilent.com/reference/learn/programmable-logic/tutorials/arty-pmod-vga-demo/start

Homework
• P0 has been released on CMSx

• Due on Sep. 9

• Read README, Makefile and queue.h

• Modify and submit queue.c and test_queue.c

• Next lecture

• Memory and C Programming

Memory and C 101

// standard library for input/output
#include <stdio.h>

int main() {
printf(“Hello World!\n”);
return 0;

}

Compile to machine code

#include <stdio.h>

int main() {
printf(“Hello World!\n”);
return 0;

}

Memory

Code

And some read-only data
Memory

Code

#include <stdio.h>

int main() {
printf(“Hello World!\n”);
return 0;

}

Read-only data

Global variable in the data section
Memory

Code

#include <stdio.h>

int global_variable = 0xab;

int main() {
printf(“Hello World!\n”);
return 0;

}

Read-only data

Data

Local variable in the stack frame
Memory

Code

#include <stdio.h>
int main() {

int local_variable = 0xcd;
printf(“Hello World!\n”);
return 0;

}

Read-only data

Data

Stack

Dynamically allocation on the heap

Memory

Code

int main() {
char* str = malloc(14);
memcpy(str, “Hello World!\n”, 14);
printf(“%s”, str);
return 0;

}
Read-only data

Data

Stack

Heap

Key of C Programming
• Machine code is in the code section

• Variables can be in

• the read-only data section

• the data section

• the stack section

• the heap section

• The key

• understand (1) where is the variable and (2) how many bytes

