
Writing an operating system in
2.5 years

Yunhao Zhang

• P0: understand computer architecture

• P1: understand context-switch and multi-threading

• P2: understand interrupt and exception

• P3: understand privilege levels and protection

• P4: understand bus and I/O devices

• P5: understand file systems

But first, writing an OS in 0.5 years

Why 2.5 years? An overview

Summer 2020

Motivation

Fall 2020

Obstacles

Fall 2021

Ideas

Spring 2022

Implementation

Fall 2022

Evaluation

0.5 years

~20K lines of code

run on Intel CPU

run on Linux / MacOS

In June 2020, we have

20K lines of code

Students read a very small portion

2K lines of code

Students read a large portion

Intel x86 (1987)

CPU documents have
several thousands of pages

RISC-V (2010)

CPU documents

have <100 of pages

CS 3410

CS 4420

User-mode OS
Easier to deploy and run

OS on hardware
More realistic and fun

~20K ~2K

Intel RISC-V

Linux / MacOS real hardware

→

→

→

3 motivations

Lesson

Good motivations should convince

non-experts why the work is important

non-experts like students, my friend doing ML theory, etc.

Yet, ideal possible≠

Summer 2020 Fall 2020

Obstacles

Sep 12, 2020

Hello World

Summer 2020 Fall 2020

Obstacles

Obstacles & Hope

The hardware had only 24KB memory

There was no disk

The hardware supports timer interrupt

The hardware supports privilege levels

Overcome obstacles with ideas!

Fall 2020

Obstacles

Fall 2021

Ideas

Jan 2021

Idea #1

Increase memory

Nov 2021

Idea #2

SD card extension

Open-source hardware

Running open-source hardware

A binary file
encoding the hardware design

Lithography:

a physical / chemical process

Idea #1: Increase memory

https://github.com/chipsalliance/rocket-chip/blob/
b21c7879b3ea22f69cb8457109561f37c225f8ea/src/main/scala/subsystem/Configs.scala#L78

https://github.com/chipsalliance/rocket-chip/blob/b21c7879b3ea22f69cb8457109561f37c225f8ea/src/main/scala/subsystem/Configs.scala#L78
https://github.com/chipsalliance/rocket-chip/blob/b21c7879b3ea22f69cb8457109561f37c225f8ea/src/main/scala/subsystem/Configs.scala#L78

Idea #2: Background

Chapter 19 of Sifive FE310 manual, v19p04
https://github.com/yhzhang0128/egos-2000/blob/main/references/sifive-fe310-v19p04.pdf

Remap SPI1 to Pmod1 for microSD card

old SPI1

new SPI1

Remap SPI1 to Pmod1 for microSD card

Old SPI1 mapping New SPI1 mapping

6 pins
GND + VCC + SPI (4)

Modifying the hardware design

https://github.com/sifive/fpga-shells/blob/14297af2878dc648ffd5751010fa72094ff444b0/xilinx/arty/constraints/arty-master.xdc#L48

Find these 4 wires in the
repo and replace them

https://github.com/sifive/fpga-shells/blob/14297af2878dc648ffd5751010fa72094ff444b0/xilinx/arty/constraints/arty-master.xdc#L48

Road towards ideas is difficult

Fall 2020

Obstacles

Fall 2021

Ideas * 2

No concrete progress for >1 year

Not sure whether this can succeed at all

Only person working on this project

Take-away:

Ideas are difficult to come up with

and there is no guarantee of success
🥲

Summer 2020

Motivation

Fall 2020

Obstacles

Fall 2021

Ideas

Spring 2022

Implementation

Fall 2022

Evaluation

https://github.com/yhzhang0128/egos-2000/blob/main/references/README.md#software-development-history

https://github.com/yhzhang0128/egos-2000/blob/main/references/README.md#software-development-history

Iteration #0
* [2020.09] Setup the toolchain provided by SiFive; Compile and run Hello World on Arty

* [2020.09] Test the basic input and print functionalities using the SiFive Metal library

Iteration #1
* [2020.12] Increase the processor memory from 24KB to 160KB (128KB + 32KB)

* [2020.12] Confirm that the memory cannot be further increased due to the limitation of Artix-7

35T FPGA chip

Iteration #2
* Yeah, I didn't work on this project in most of 2021...

* [2021.12] Create a docker image for portable toolchain setup: [Docker Hub repo](https://
hub.docker.com/repository/docker/yhzhang0128/arty-toolchain)

* [2021.12] Reconnect the processor SPI bus controller to the Arty Pmod1 pins

* [2021.12] Implement the SD card initialize, read and write functions

* [2021.12] Increase the processor clock frequency from 32MHz to 65MHz so that read/write
blocks become faster

Iteration #3
* [2022.01] Confrim that the processor clock frequency cannot be further increased

* [2022.01] Implement the `dev_tty`, `dev_disk`, `cpu_intr` and `cpu_mmu` interfaces in earth

* [2022.01] Load the ELF format grass kernel binary file from the SD card to memory

* [2022.01] Implement the control transfer from earth to grass kernel and then to a user application

* [2022.01] Implement `mkrom` so that creating the bootROM image no longer require Vivado or Docker

Iteration #4
* [2022.02] Read Chapter 1, 2 and 3 of [RISC-V manual](riscv-privileged-v1.10.pdf)

* [2022.02] Read Chapter 8, 9 and 10 of [FE310 manual](sifive-fe310-v19p04.pdf)

* [2022.02] Implement timer reset, preemptive scheduling and inter-process communication

* [2022.02] Implement the kernel processes: GPID_PROCESS, GPID_FILE, GPID_DIR, GPID_SHELL

Iteration #5
* [2022.03] Implement system calls and 4 shell commands: `pwd`, `ls`, `cat` and `echo`

* [2022.03] Add support of background shell commands and `killall`

* [2022.03] Add servers in `library` and cleanup access to the file system

* [2022.03] Cleanup the code controlling UART and SPI; Remove dependency on the Metal library

Iteration #6
* [2022.04] Add a simple boot loader `earth/earth.S`; Remove dependency on the Metal library

* [2022.04] Add `_write()` and `_sbrk()` in `library/libc`; Remove the Metal library entirely

* [2022.04] Enrich `struct grass` in order to improve clarity of the architecture

* [2022.04] Experiment with Physical Memory Protection (PMP) and switching privilege level (machine
<-> user)

The bug taking me >1 day to fix

https://github.com/chipsalliance/rocket-chip/blob/b21c7879b3ea22f69cb8457109561f37c225f8ea/src/main/scala/subsystem/Configs.scala#L78

https://github.com/chipsalliance/rocket-chip/blob/b21c7879b3ea22f69cb8457109561f37c225f8ea/src/main/scala/subsystem/Configs.scala#L78

Lesson

Implementing a system is non-trivial

and requires determination and hard work

Evaluating the ideas: a class!

Remember to write the
course evaluations!

What can be improved?

Summer 2020 Fall 2020

Obstacles

Fall 2021

Ideas

Spring 2022

Implementation

Fall 2022

Evaluation

A 4.5-year research process

Summer 2020

Motivation Obstacles Ideas Implementation

Fall 2022

Evaluation

Summer 2018 Summer 2020
2 years: Becoming familiar with OS education

Then, challenge state-of-the-art

Publish the research

Stay in touch: LinkedIn or Instagram

Homework

• P4 is optional

• P5 is due on Dec. 7 (extended)

• Please help with course evaluations!

• see the pinned post #276 on Ed discussion

https://edstem.org/us/courses/25845/discussion/2221539

