
Disk I/O and File System

Agenda
• Disk

• SD card driver

• memory-mapped I/O

• From disk to file system

• one-to-many virtualization

• virtual block store and inodes

• reading and writing a virtual block store

Disk: a sequence of blocks

Content 1st block 2nd block 3rd block …… 2^28th block

Address 0 1 2 …… 2^28-1

• A block is usually 512 bytes

• 2^28 * 512 bytes 2^37 bytes 128 GB→ →

From abstraction to implementation

Content 1st block 2nd block 3rd block …… 2^28th block

Address 0 1 2 …… 2^28-1

Agenda
• Disk

• SD card driver

• memory-mapped I/O

• From disk to file system

• one-to-many virtualization

• virtual block store and inodes

• reading and writing a virtual block store

Send a byte to SD card
char send_data_byte (char byte) {
 /* Send the byte */
 while ((*(int*)(0x10024048)) & (1 << 31));
 (*(int*)(0x10024048)) = byte;

 /* Every byte sent will have one byte response */
 long rxdata;
 while ((rxdata = (*(int*)(0x1002404C))) & (1 << 31));
 return (char)(rxdata & 0xFF);
}

Receive a byte from SD card

char recv_data_byte() {
 /* Send a dummy byte and get the response */
 return send_data_byte(0xFF);
}

Why 0x10024048 and 0x1002404C?

Chapter 19 of Sifive FE310 manual, v19p04
https://github.com/yhzhang0128/egos-2000/blob/main/references/sifive-fe310-v19p04.pdf

.

.

Read a block from SD card

/* Send a command to SD card reading block #128 */
int block_no = 128;
char *arg = (void*)&block_no;
char cmd17[] = {0x51, arg[3], arg[2], arg[1], arg[0], 0xFF};
for (int i = 0; i < 6; i++) send_data_byte(cmd17[i]);

/* Wait and receive 512 bytes */
while (recv_data_byte() != 0xFE);
for (int i = 0; i < 512; i++) dst[i] = recv_data_byte();

Agenda
• Disk

• SD card driver

• memory-mapped I/O

• From disk to file system

• one-to-many virtualization

• virtual block store and inodes

• reading and writing a virtual block store

Take-away

Memory-mapped I/O: communicate with
I/O devices using memory load/store

e.g., the 0x10024048 and 0x1002404C just mentioned

• Port I/O

• In Intel x86, there are special in/out instructions for I/O

• Memory-mapped I/O

• In Intel x86 and RISC-V, there is an I/O hole in memory

• read/write to I/O hole will not modify memory

• instead, send/receive bytes to/from I/O devices

Brief history of Input/Output

Agenda
• Disk

• SD card driver

• memory-mapped I/O

• From disk to file system

• one-to-many virtualization

• virtual block store and inodes

• reading and writing a virtual block store

Recap: A computer has 3 key pieces

Scheduler is virtualizing the CPU

one physical CPU

 many virtual CPUs→

Virtualize

Virtual
CPU #1

Virtual
CPU #2

Virtual
CPU #n……

Virtual Memory

one physical

memory

Virtualize

Virtual memory

address space #1

Virtual memory

address space #2

 many virtual

memory

→

File system is virtualizing the Disk

Virtualize

Files for zoom Files for keynote

one physical disk

 many virtual disks (files)→

Recap:

OS virtual CPU + virtual memory

+ virtual disk
≈

All are one-to-many virtualization here.

Agenda
• Disk

• SD card driver

• memory-mapped I/O

• From disk to file system

• one-to-many virtualization

• virtual block store and inodes

• reading and writing a virtual block store

Block store: a sequence of blocks

• A 128GB disk is a block store with 2^28 blocks

Content 1st block 2nd block 3rd block …… 2^28th block

Address 0 1 2 …… 2^28-1

One-to-many virtualization of block store

• A 128GB disk is a block store with 2^28 blocks

File system: virtual block stores (VBS)

Example of 256 virtual block stores

• A 128GB disk is a block store with 2^28 blocks

File system: virtual block stores (VBS)
VBS #1 (4.2 GB)

VBS #2 (5 MB)

VBS #256

. .
 .

. .
 .

Virtual block stores as files

• A 128GB disk is a block store with 2^28 blocks

File system: virtual block stores (VBS)

VBS #1 (4.2 GB)

VBS #2 (5 MB)

Harry Potter movie

Picture of Yunhao

Inode: short term for VBS

• A 128GB disk is a block store with 2^28 blocks

File system: virtual block stores (or simply inodes)
Inode #1 (4.2 GB)

Inode #2 (5 MB)

Inode #256

. .
 .

. .
 .

Agenda
• Disk

• SD card driver

• memory-mapped I/O

• From disk to file system

• one-to-many virtualization

• virtual block store and inodes

• reading and writing a virtual block store

Step #1: user reading an inode

File #0 File #1 …

Read (ino = 1, offset = 15)1

1

Super
Block Metadata region Data region

File #0 File #1 …

2 Read the metadata of inode #1

Read (ino = 1, offset = 15)

Block #0 Block #1 … Block #m Block #m + 1 … Block #n

Step #2: file system reading metadata

2

1

Super
Block Metadata region Data region

File #0 File #1 …

3 Read the data of inode #1Read the metadata of ino

Read (ino = 1, offset = 15)

Block #0 Block #1 … Block #m Block #m + 1 … Block #n

Step #3: file system reading data

Basic file system interface for users

File #0 File #1 …

https://github.com/yhzhang0128/egos-2000/blob/main/library/file/inode.h

P5: A FAT-style file system
• Implement 4 functions:

/* below is the SD card block store */
/* ninodes is the “how-many” of one-to-many virtualization */
fatdisk_create(below, below_ino, ninodes);

/* read and write a block of an inode */
fatdisk_read(this_bs, ino, offset, *block);
fatdisk_write(this_bs, ino, offset,*block);

fatdisk_free_file(*snapshot, *fs); /* see next slide */

Caution!
• In P5, you implement on-disk data structures

• 3 steps: read from disk; modify memory; write to disk

• Many bugs are caused by forgetting this 3-step approach

• How to start P5?

• Read helper function fatdisk_get_snapshot()

• which, given an inode number, reads 2 blocks to memory

⭐

Homework
• P4 is optional

• P5 is due on Dec. 5

• No class next week: Happy thanksgiving!

• The last lecture on Dec. 2 will be educational

