Disk 1/0 and File System

Agenda

e Disk
* SD card driver
 memory-mapped I/O
 From disk to file system
e one-to-many virtualization
* virtual block store and inodes

* reading and writing a virtual block store

Disk: a sequence of blocks

Content 1st block 2nd block 3rd block ... 2N\28th block

Address 0 1 2 .. 2N28-1

* A block is usually 512 bytes
o 2N28 * 512 bytes — 22737 bytes — 128 GB

From abstraction to implementation

Content 1st block 2nd block 3rd block 2N\28th block

Address 0 1 2 ... 2N28-1

San)isk
Ultra

~ 128ca MBU

. (o |

@ A

Agenda

* Disk
=» SD card driver
 memory-mapped I/O
 From disk to file system
e one-to-many virtualization
e virtual block store and inodes

* reading and writing a virtual block store

Send a byte to SD card

char send_data_byte (char byte) {
/* Send the byte */
while ((*(1nt*)(0x10024048)) & (1 << 31));
(*(1nt*)(0x10024048)) = byte;

/* Every byte sent will have one byte response */
long rxdata;

while ((rxdata = (*(1nt*)(0x1002404C))) & (1 << 31));
return (char)(rxdata & OxFF);

Receive a byte from SD card

char recv_data_byte() {
/* Send a dummy byte and get the response */
return send_data_byte(OxFF);

Why 0x10024048 and 0x1002404C?

Instance | Flash Controller Address cs_width | div_width
QSPI 0 Y 1 12
SPI 1 N 4 12
SPI| 2 N 1 12

Ox48 ||txdata TX FIFO Data
Ox4C |lrxdata RX FIFO data

Table 65: Register offsets within the SPI memory map. Registers marked * are present only on
controllers with the direct-map flash interface.

Chapter 19 of Sifive FE310 manual, v19p04
https://github.com/yhzhang0128/egos-2000/blob/main/references/sifive-fe310-v19p04.pdf

Read a block from SD card

/* Send a command to SD card reading block #128 */

1nt block_no = 128;

char *arg = (void*)&block_no;

char cmdl7[] = {0x51, arg[3], argl[2], arg[l], arg[0], OxFF};
for (int 1 =0; 1 < 6; 1++) send_data_byte(cmdl7[1]);

/* Wait and receive 512 bytes */
while (recv_data_byte() !'= OxFE);
for (int 1 = 0; 1 < 512; 1++) dst[1] = recv_data_byte();

Agenda

* Disk
* SD card driver
=» memory-mapped I/O
 From disk to file system
e one-to-many virtualization
e virtual block store and inodes

* reading and writing a virtual block store

Take-away
Memory-mapped I/0O: communicate with
/0 devices using memory Load/store

e.g., the 0x10024048 and 0x1002404C just mentioned

Brief history of Input/Output

e Port I/O
* |n Intel x86, there are special in/out instructions for |/O
 Memory-mapped I/O
* |In Intel x86 and RISC-V, there is an |/O hole in memory
* read/write to I/0O hole will not modify memory

* instead, send/receive bytes to/from |/O devices

Agenda

* Disk
* SD card driver
 memory-mapped |/O
 From disk to file system
=) one-to-many virtualization
e virtual block store and inodes

* reading and writing a virtual block store

Recap: A computer has 3 key pleces

268 PC2-5300U0-555 swlissbit®

, . * '
=~ MEU25664D6 .
I n tel B o168/ 200387(:7%5P - 0840
. B 4500010489

Made in Germany wem
™ 17 ﬁ
Core™ i7 i

I

L.
PO

o i e Sl sl
LE gj lge,e- ""QJ "E”" Qj nthE pree QJ

JiillliilllllllllIIIIIIIIIIIilIlIIiillllIIVI»IIIIIIIIIIIIIII-I.IIII-:-.

B"”"'
&

Scheduler is virtualizing the CPU

KEYNOTE

| A :

Virtual

CPU 2 BERE

Virtualize

W
e ———

[
S EPOPPEOPPOREP DS

one physical CPU

— many Virt

swissmade
7 www.swissbit.com 3

268 PC253000455 SWissbit®
MEU25664D6BC2ER-30R

601682 / 20037725 0540
4500010489 Made in Germany weem

=i ool < ale T i b el sl
. E 4 e L5 £ E=0N A PSS S

NN AAN ALY - AOOATEATEALER R TR A R nn1.. @

ual CPUs

one physical
memory

‘.

PPPOPPOOPPOPIPPOI

vy

emory

KEYNOTE

F Y

Virtual memory
address space #1

Virtual memory
address space #2

26BPC25300U555 Swissbit®
MEU25664D6BC2EP-30R

601682 / 20037725 0840
4500010489 Made in Germany wem

13 £ Sl ="

v g Rl)bl) $ S B2 - LRSI o U0 T, (e X)
LT L T T T L L L L L LT L L LT T LT T T T

l-ijLLi:; _;—JJ-LLL :;:_HJEleLL:;: ;;‘_I’JJE:.LLL;:. —':

I =R el T A\ RN o e (AR
il Y LAy PRI NSRS

;.zllllllIIIIIIIﬁlIIIIIIIIIIIIIIIiIIIIL“.IIIIIIII..:.IlllL ,I-IlllllllllllllllllllIlIIII"IIII-IIIIIIIIIIIIIIIIIVIIIIIIIIIIII-.. |

— many virtual

File system Is virtualizing the

one physical disk
— many virtual disks (files)

Core™i7

POFPSSOPPS

1

268 PC25300U455 Swissbit®
MEU25864D6BC2EP-30R

501682 / 20037725 0540
4500010489 Made in Germany weem

i ot ot g i e alae
ol I = e a Y | EER N el IESE S S

z..llIIIIIIIIIIII“IYIIIIIIIIIvIIIIIIIi-IIIL--iIIIIIIITIIIIL ,I-II-.. !

Files for zoom

KEYNOTE

oA :

Files for keynote

Virtualize

Recap:

OS =~ virtual CPU + virtual memory
+ virtual disk

All are one-to-many virtualization here.

Agenda

e Disk
* SD card driver
 memory-mapped |/O
 From disk to file system
e one-to-many virtualization
=» virtual block store and inodes

* reading and writing a virtual block store

Block store: a sequence of blocks

Content 1st block 2nd block 3rd block ... 2N\28th block

Address 0 1 2 .. 2N\28-1

1 A 128GB disk is a block store with 2728 blocks

One-to-many virtualization of block store

File system: virtual block stores (VBS)

A 128GB disk is a block store with 2728 blocks

Example of 256 virtual block stores

File system: virtual block stores (VBS)

8808038th
Content 1st block 2nd block Sidblock ...
VBS #1 (4.2 GB) block
Address 0 1 2 L 8808037
Content 1st block 2nd block 3rd block 10240th block
VBS #2 (5 M B) Address 0 1 2 10239

VBS #256

A 128GB disk is a block store with 2728 blocks

OMETHING E'VYL HAS RETURNI ®

Virtual block stores as files

File system: virtual block stores (VBS)

/s
§ OR

Content fiiblock: =~ Jnablock - Aidblock - ik
VBS #1 (4.2 GB)
Address 0 1 2 8808037
Harry Potter movie
Content 1st block 2nd block 3rd block 10240th block | @
VBS #2 (5 M B) Address 0 1 2. - 10239

Picture of Yunhao

A 128GB disk is a block store with 2728 blocks

Inode: short term for VBS

File system: virtual block stores (or simply inodes)

8808038th
Content 1st block 2nd block 3rd block
Inode #1 (4.2 GB) block
Address 0 1 2 L 8808037
Content 1st block 2nd block 3rd block 10240th block
InOde #2 (5 M B) Address 0 1 2 10239

Inode #256

A 128GB disk is a block store with 2728 blocks

Agenda

e Disk
* SD card driver
 memory-mapped I/O
 From disk to file system
e one-to-many virtualization
* virtual block store and inodes

=» reading and writing a virtual block store

Step #1: user reading an inode

Read (1no = 1, offset = 15)

v

Hb#ﬂ‘

File #0

Step #2: file system reading metadata

Read (1no = 1, offset = 15)

v

File #0 ‘ File #1 ‘

Read the metadata of 1node #1

\ 4

Metadata region ‘ Data region

Super
Block

Block #0 Block #1 ... Block #m Block #m + 1 ... Block #n

Step #3: file system reading data

Read (1no = 1, offset = 15)

v

Hb#O‘FMMH‘

Read the metadata of 1no Read the data of 1node #1
Super Metadata region Data region
Block J J

Block #0 Block #1 ... Block #m Block #m + 1 ... Block #n

Basic file system interface for users

File #0 ‘ File #1 ‘

typedef struct inode_store {
int (xgetsize)(struct inode_store xthis_bs, unsigned int ino);
int (xsetsize)(struct inode_store xthis_bs, unsigned int ino, block_no newsize);
int (xread) (struct inode_store xthis_bs, unsigned int ino, block_no offset, block_t xblock);
int (xwrite)(struct inode_store xthis_bs, unsigned int ino, block_no offset, block_t xblock);
void xstate;

} inode _store_t;

https://github.com/yhzhang0128/egos-2000/blob/main/library/file/inode.h

PS5: A FAIl-style file system

* Implement 4 functions:

/* below 1s the SD card block store */

/* ninodes 1s the “how-many” of one-to-many virtualization */
fatdisk_create(below, below_ino, ninodes);

/¥ read and write a block of an inode */
fatdisk_read(this_bs, 1no, offset, *block);
fatdisk_write(this_bs, 1no, offset,*block);

fatdisk_free_file(*snapshot, *fs); /* see next slide */

Caution!

* In PS5, you implement on-disk data structures
e 3 steps: read from disk; modify memory; write to disk
 Many bugs are caused by forgetting this 3-step approach
* How to start P57

Read helper function fatdisk_get_snapshot()

* which, given an inode number, reads 2 blocks to memory

Homework

P4 Is optional
PS5 Is due on Dec. 5
No class next week: Happy thanksgiving!

The last lecture on Dec. 2 will be educational

