
How to read a code repository?

Read a repository: 3 passes
• 1st pass

• read documents and filenames

• 2nd pass

• track the execution: earth grass applications

• 3rd pass

• read the details of a module, such as the SD card driver

→ →

Documents of egos-2000
• README.md

• Explain why the project is important

• references/USAGES.md

• Explain how to use this project

• references/README.md

• Explain the internal design of the project

Read filenames: earth
• From the documents:

Read filenames: earth
• cpu_intr, cpu_mmu, dev_disk, dev_tty

are explained in the documents

• gpio and uart are buses, just like usb;
Search them on Wikipedia

Read filenames: earth
• cpu_intr, cpu_mmu, dev_disk, dev_tty

are explained in the documents

• gpio and uart are buses, just like usb;
Search them on Wikipedia

• earth.S and earth.c are for initialization

• earth.lds specifies the memory layout

Read filenames: earth/sd

• sd.h provides basic definitions

• sd_init.c initializes the SD card

• sd_rw.c provides SD card read and write

• sd_utils.c provides helper functions

• We will read this module in details later

Read filenames: grass
• From the documents:

Read filenames: grass
• process, syscall, timer, scheduler

are explained in the documents

• grass.S and grass.c are for initialization

• grass.lds specifies the memory layout

Read a repository: 3 passes
• 1st pass

• read documents and filenames

• 2nd pass

• track the execution: earth grass applications

• 3rd pass

• read the details of a module, such as the SD card driver

→ →

The Key:

Find main() functions

and track executions from there

grep is a useful command
> cd egos-2000
> grep "main(" -r *

Main functions in the repository
> cd egos-2000
> grep "main(" -r *
earth/earth.S: /* Call main() of earth.c */
earth/earth.c:int main() {
grass/grass.S: /* Call main() of grass.c */
grass/grass.c:int main() {
tools/mkrom.c:int main() {
tools/mkfs.c:int main() {

apps/*.c: /* Every application has a main() function */

Main function in earth
• Read earth.s and earth.c

• Boot loader disable interrupt and call earth main()

• Earth main()

• Initialize memory for earth layer

• Initialize dev_tty, dev_disk, cpu_intr, cpu_mmu

• Load and enter the grass layer

Main function in grass
• Read grass.s and grass.c

• Initialize PCB data structures

• Initialize the timer and enable interrupt

• Load and enter the first application: GPID_PROCESS

• Where is GPID_PROCESS defined?

Find GPID_PROCESS

> cd egos-2000
Find which header file contains GPID_PROCESS
> grep "GPID_PROCESS" -r * | grep “\.h"

library/servers/servers.h: GPID_PROCESS,
library/servers/servers.h:/* GPID_PROCESS */

Kernel Processes (aka. Daemon)
• GPID_PROCESS

• spawn and kill processes

• GPID_FILE & GPID_DIR

• something about file system

• GPID_SHELL

• shell for entering commands

Control Flow Sketch
• During boot up

• earth main() grass main() GPID_PROCESS

• GPID_PROCESS GPID_FILE

• GPID_PROCESS GPID_DIR

• GPID_PROCESS GPID_SHELL

• After boot up

• GPID_SHELL user applications

→ →
→
→
→

→

Two more main functions to read
> cd egos-2000
> grep "main(" -r *
earth/earth.S: /* Call main() of earth.c */
earth/earth.c:int main() {
grass/grass.S: /* Call main() of grass.c */
grass/grass.c:int main() {
tools/mkrom.c:int main() {
tools/mkfs.c:int main() {

apps/*.c: /* Every application has a main() function */

mkfs and mkrom
• During make, the RISC-V compiler compiles egos-2000

• i.e., create everything under build/

• During make install,

• mkfs creates disk.img

• mkrom creates bootROM.bin

Reading main() provides a rough picture

> cd egos-2000
> grep "main(" -r *
earth/earth.S: /* Call main() of earth.c */
earth/earth.c:int main() {
grass/grass.S: /* Call main() of grass.c */
grass/grass.c:int main() {
tools/mkrom.c:int main() {
tools/mkfs.c:int main() {

apps/*.c: /* Every application has a main() function */

We know the structure of the work and some details.

Reading main() provides a rough picture

Read a repository: 3 passes
• 1st pass

• read documents and filenames

• 2nd pass

• track the execution: earth grass applications

• 3rd pass

• read the details of a module, such as the SD card driver

→ →

• CS4411 has 12 lectures:

• Step #1: understand computer architecture

• Step #2: understand interrupt and exception

• Step #3: understand context-switch and multi-threading

• Step #4: understand privilege levels

• Step #5: understand i/o devices

• Step #6: understand file systems

Now is a good time to read the SD driver

In your career:

Find and read the module that is

the most relevant to your assigned job

Part #1 of earth/sd.h
• spi is a bus, just like usb

• section19 of SiFive document

• The document is a dictionary
for reference, instead of a
textbook!

• read only when necessary

Part #2 of earth/sd.h

Read and write disk blocks

Send commands to SD card

Send bytes to SD card

Part #2 of earth/sd.h

Read and write disk blocks

Send commands to SD card

Send bytes to SD card

calls

calls

What to understand in sd_utils.c

How to send and receive
bytes to/from the SD card?

What to understand in sd_utils.c

How to send commands to the SD card?

What to understand in sd_rw.c

How to read a block from the SD card?

Homework
• P4 will be released and is optional.

• P5 will be released and due on Dec 2.

• No class next week (Nov. 11)

• switch to office hours in Gates 437 due to Veterans day

• Lecture on Nov. 18: file systems

