How to read a code repository?

Read a repository: 3 passes

=» 1st pass
e read documents and filenames

e 2Nnd pass

e track the execution: earth — grass — applications

e 3rd pass

e read the details of a module, such as the SD card driver

Documents of egos-2000

« README.md

e Explain why the project Is important
* references/USAGES.md

* Explain how to use this project
* references/README.md

* Explain the internal design of the project

Read filenames: earth

* * From the documents:

[N bus_gpio.c

[N bus_uart.c

Earth layer (hardware specific)

e earth/dev_disk : ROM and SD card (touched by P4)
e earth/dev_tty : keyboard input and tty output

e earth/cpu_intr : interrupt and exception handling (touched by P3)
M ~devetiy:e e earth/cpu_mmu : memory paging and address translation (touched by P3)

[Y earth.S
[\ earth.c

[N earth.lds

Read filenames: earth

* e Cpu_1intr, cpu_mmu, dev_disk, dev_tty
E are explained in the documents
() -e e gp10 and uart are buses, just like usb;
N e Search them on Wikipedia
[N earth.S
[\ earth.c

[N earth.lds

Read filenames: earth

sd

e Cpu_1intr, cpu_mmu, dev_disk, dev_tty
are explained in the documents

e gp10 and uart are buses, just like usb;
Search them on Wikipedia

e earth.S and earth. c are for initialization

e earth. Lds specifies the memory layout

0 0O 0 03

Read filenames: earth/sd

e sd.h provides basic definitions

e e sd _1n1t.c initializes the SD card
sd_init.c
e sd_rw. c provides SD card read and write
sd rw.c
cd utils c e sd_ut1ls. c provides helper functions

e We will read this module In detalls later

000000 0B 0 0

grass.S
grass.c

grass.lds

Read filenames: grass

e From the documents:

Grass layer (hardware independent)

e grass/timer : timer control registers
e grass/syscall : system call interfaces to user applications
e grass/process : data structures for managing processes (touched by P1)

e grass/scheduler : preemptive scheduling and inter-process communication

Read filenames: grass

e process, syscall, timer, scheduler
are explained in the documents

* grass.S and grass. c are for initialization

e grass. Lds specifies the memory layout

Read a repository: 3 passes

e 1st pass

e read documents and fillenames

=» 2nd pass

e track the execution: earth — grass — applications

e 3rd pass

e read the details of a module, such as the SD card driver

The Key:
Find main() functions

and track executions from there

grep iIs a useful command

> cd egos-2000
> grep "main(" -r *

Main functions In the repository

> cd egos-2000
> grep "main(" -r *
earth/earth.S: /*¥ Call main() of earth.c */
earth/earth.c:1nt main() {
grass/grass.S: /* Call main() of grass.c */
grass/grass.c:1int main() {

C:

tools/mkrom.c:1int main() {
tools/mkfs.c:1nt main() {

apps/*.c: /* Every application has a main() function */

Main function In earth

 Read earth.s and earth.c
* Boot loader disable interrupt and call earth main()
* Farth main()
* |nitialize memory for earth layer
 |nitialize dev_tty, dev_disk, cpu_intr, cpu_mmu

* Load and enter the grass layer

Main function In grass

 Read grass.s and grass.c

* Initialize PCB data structures

* |nitialize the timer and enable interrupt

* Load and enter the first application: GPID_PROCESS
* Where is GPID_PROCESS defined?

Find GPID_PROCESS

> cd egos-2000
Find which header file contains GPID_PROCESS
> grep "GPID_PROCESS" -r * | grep “\.h"

Library/servers/servers.h: GPID_PROCESS,
Library/servers/servers.h:/* GPID_PROCESS */

Kernel Processes (aka. Daemon)

enum grass_servers { e GPID_PROCESS
GPID UNUSED,

GPID PROCESS,
GPID FILE, ¢ GPID_FILE & GPID_DIR

e spawn and Kill processes

GPID_DIR, » something about file system
GPID_SHELL,

GPID_USER_START
) » shell for entering commands

o GPID_SHELL

Control Flow Sketch

* During boot up
e earth main() = grass main() = GPID_PROCESS

 GPID_PROCESS — GPID_FILE
 GPID_PROCESS — GPID_DIR

 GPID_PROCESS — GPID_SHELL

o After boot up
 GPID_SHELL — user applications

Two more main functions to read

> cd egos-2000

> grep "main(" -r *

earth/earth-S- /* Call-marn—oftearth.-c*/
eagrthlearth-cint mainO—F

grass/grass+S- A= CallmatnO—ofgrass.—e*/
grasstgrass—crtmatno—t

tools/mkrom.c:1nt main() {

tools/mkfs.c:i1nt main() {

apps/*.c: /* Every application has a main() function */

mkfs and mkrom

e During make, the RISC-V compiler compiles egos-2000
e i.e., create everything under bui1ld/

e During make 1install,

SRS NN
.".' """" SAIAIMIMIMN ARAAIAIZ IR -

« mkfs creates disk.img -

IR R

L LEL)

nnnnnnnnnnnn
M EME HERARMMEHEANE

» mkrom creates bootROM.bin

_» /ADIGILENT. i
\5? CK_RSY

Hinrn

038067

IBBBRRE B8eeosen

& A — SN > i 2138 ‘.'
B - - -
g { 2
v 1
Bic ~ I Ll
3 7] 2 (] 3
2 =
1
D11 =¥ pes 62" ¥psc' ¥p4s . :
= 68 R67 50 - R4S | g
8% . p72, R7 54, R53)
. 7 el G q R

@ @@ OG0B G G G

$129 Arty A7 FPGA Development Board

Reading main() provides a rough picture

> cd egos-2000

> grep "main(" -r *

earth/earth S /* Cagll-main—ofearth.c */
earth/earth-cint-martn—

grass/grass+S- A= CallmatnO—ofgrass.—e*/
grass/grass—cintmatno—4
tools/mkrom-—ciint-marn—+
tools/mkfscitnt-marn—+

apps/*.c: /* Every application has a main() function */

Reading mai1n() provides a rough picture

We know the structure of the work and some details.

Read a repository: 3 passes

e 1st pass
e read documents and filenames

e 2Nnd pass

e track the execution: earth — grass — applications

=» 3rd pass

e read the details of a module, such as the SD card driver

Now is a good time to read the SD driver

* CS4411 has 12 lectures:
o Step #1: understand computer architecture
o Step #2: understand interrupt and exception
e Step #3: understand context-switch and multi-threading
o Step #4: understand privilege levels
o Step #5: understand i/o devices

o Step #6: understand file systems

In your career:
Find and read the module that is
the most relevant to your assigned job

#define

#define
#define
#define
#define
#define
#define
#define
#define
#define

Part #1 of earth/sd.h

SPI1_BASE

SPI1_SCKDIV
SPI1_SCKMODE
SPI1_CSID
SPI1_CSDEF
SPI1_CSMODE
SPI1_FMT
SPI1_TXDATA
SPI1_RXDATA
SPI1_FCTRL

0x10024000UL » SP1 iS a bus, just like usb

ouL e section19 of SiFive document
4UL

16UL The document is a dictionary
20UL :

auL for reference, instead of a

54UL textbook!

72UL

76UL * read only when necessary
96UL

Part #2 of earth/sd.h

void sdinit():

Read and write disk blocks int sdread(int offset, int nblock, charx dst);

int sdwrite(int offset, int nblock, charx src);

char sd exec cmd(charx);

Send commands to SD card
char sd exec acmd(charx);

char recv_data_byte();
Send bytes to SD card V- -byte{)

char send _data_byte(char);

Part #2 of earth/sd.h

void sdinit():

Read and write dick blocks int sdread(int offset, int nblock, charx dst);

int sdwrite(int offset, int nblock, charx src);
calls

char sd exec cmd(charx);
Send commands to SD card

calls
Send bytes to SD card

char sd _exec_acmd(charx);
char recv_data_byte();
char send _data_byte(char);

What to understand in sd utils.c

char send _data_byte(char byte) {
while (REGW(SPI1 BASE, SPI1 TXDATA) & (1 << 31));
REGB(SPI1_BASE, SPI1_TXDATA) = byte;

long rxdata;
while ((rxdata = REGW(SPI1 BASE, SPI1 RXDATA)) & (1 << 31));
return (char) (rxdata & OxFF):

inline char recv_data_byte() { _
How to send and receive

return send_data_byte(0xFF);
bytes to/from the SD card?

What to understand in sd utils.c

char sd exec cmd(charx cmd) {
for (int 1 = @; i < 6; i++) send _data_byte(cmd[i]);

for (int reply, 1 = 0; i < 8000; i++)
if ((reply = recv_data_byte()) !'= OxFF) return reply;

FATAL("SD card not responding cmd%d", cmd[@] ~ 0x40);

How to send commands to the SD card?

What to understand in sd rw.c

static void single_read(int offset, charx dst) {
/* Wait until SD card 1s not busy x/
while (recv_data_byte() !'= OxFF);

/* Send read request with cmdl7 x/
char xarg = (voidx)&offset;
char reply, cmd17[] = {0x51, argl[3], argl2], argl[l], argl[@], OxFF};

if (reply = sd_exec_cmd(cmd17))
FATAL("SD card replies cmdl7 with status 0x%.2x", reply);

/* Walt for the data packet and ignore the 2-byte checksum x/
while (recv_data_byte() !'= OxFE);

for (int i = @; i < BLOCK_SIZE; i++) dst[i] = recv_data_byte();
recv_data_byte();

recv_data_byte(); How to read a block from the SD card?

Homework

P4 will be released and Is optional.

PS5 will be released and due on Dec 2.

No class next week (Nov. 11)

» switch to office hours in Gates 437 due to Veterans day

Lecture on Nov. 18: file systems

