
Virtual Memory and Page Tables
for the optional part of P3

Agenda
• What is the problem?

• What is virtualization?

• Implement virtual memory

• mechanism #1: software TLB + PMP

• mechanism #2: page table translation

• Further discussion: how to read a code repository?

compiles

compiles

compiles

compiles

Put the code at address 0x ….
and stack at address 0x ….

Put the code at address 0x ….
and stack at address 0x ….

OS suggests a standard layout
• 32-bit Windows standard layout

• It is good to follow this standard,
but also possible not to follow

• There are may standards in the
systems industry

• POSIX, ISO OSI, etc.

compiles

compiles

Good to follow the
memory layout standard!

Good to follow the
memory layout standard!

But the problem is
• The code section (program image)

starts at 0x0040_0000

• In physical memory, the OS can
only put the code section of one
process at this address

• But OS runs many processes!

• Introduce virtual memory will help

Agenda
• What is the problem?

• What is virtualization?

• Implement virtual memory

• mechanism #1: software TLB + PMP

• mechanism #2: page table translation

• Further discussion: how to read a code repository?

An important concept:
One-to-many virtualization

A computer has 3 mandatory pieces

Scheduler is virtualizing the CPU

one physical CPU
 an illusion of many

virtual CPU
→

Virtualize

Virtual
CPU #1

Virtual
CPU #2

Virtual
CPU #n……

Virtual Memory

one physical
memory

Virtualize

Virtual memory
address space #1

Virtual memory
address space #2

 an illusion of
many virtual

memory

→

File system is virtualizing the Disk

Virtualize

Files for zoom Files for keynote

one physical disk
 an illusion of

many virtual disks (files)
→

Take-away
operating system = virtual CPU +

virtual memory + virtual disk
All are one-to-many virtualization here.

Further topics: 3 Types of Virtualization

• One-to-many virtualization

• e.g., operating system

• Many-to-one virtualization

• e.g., RAID, Spark

• A-to-B virtualization

• e.g., VMware Workstation, Windows Subsystem Linux

• What is the problem?

• What is virtualization?

• Implement virtual memory

• mechanism #1: software TLB + PMP

• mechanism #2: page table translation

• Further discussion: how to read a code repository?

Agenda

Virtual Memory Interface #1
// Allocate a physical memory page
int (*mmu_alloc)(int* frame_no, void** cached_addr);

// Free a physical memory page
int (*mmu_free)(int pid);

// The physical memory roughly looks like:

OS code, stack Metadata for alloc/free Pages to be allocated or freed

Virtual memory
address space #1

Virtual memory
address space #2

Virtual Memory Interface #2
// Map a virtual page in the address space of pid
// to a physical page (here called frame);
// Useful when creating a new process, such as zoom
int (*mmu_map)(int pid, int page_no, int frame_no);

// Switch the address space to pid;
// Useful when switching the context to a process
int (*mmu_switch)(int pid);

• What is the problem?

• What is virtualization?

• Implement virtual memory

• mechanism #1: software TLB + PMP

• mechanism #2: page table translation

• Further discussion: how to read a code repository?

Just a brief recap of last week’s class

RUNNING and RUNNABLE

Page * 2

Page * 3

All pages of all RUNNABLE processes

0x0800_5000

0x8000_0000

0x8000_4000

code/data/heap of the RUNNING process

stack of the RUNNING process

Memory buffer

When creating a process

Page * 2

Page * 3

All pages of all RUNNABLE processes

0x0800_5000

0x8000_0000

0x8000_4000

Memory buffer

Allocate 5 pages in the memory buffer

and load the code/data of the new process.

mmu_alloc() and mmu_map() are involved.

mmu_switch() step1 in yield()

Page * 2

Page * 3

All pages of all RUNNABLE processes

0x0800_5000

0x8000_0000

0x8000_4000

Memory buffer

Write these 5 pages of the

previously running process

to the memory buffer.

Page * 2

Page * 3

All pages of all RUNNABLE processes

0x0800_5000

0x8000_0000

0x8000_4000

Memory buffer

Load the 5 pages of the next running

process from the memory buffer.

mmu_switch() step2 in yield()

• What is the problem?

• What is virtualization?

• Implement virtual memory

• mechanism #1: software TLB + PMP

• mechanism #2: page table translation

• Further discussion: how to read a code repository?

Agenda

Memory Buffer

0x8000_4000

For every process

Allocate 5 pages for code, stack, etc.

And in addition,

allocate some more pages, say 3, as page tables.

Page table #1

Page table #2

Page table #3

Example: 0x8000_1234 0xabcd_1234→

0x8000_1234 is the virtual address of the process

0xabcd_1234 is the physical address in the memory

Page table #1

Page table #2

Page table #3

Break down address 0x8000_1234

Page table #1

Page table #2

Page table #3

VPN[1] is 0x200, or 10_0000_0000 in binary

VPN[0] is 0x001, or 00_0000_0001 in binary

Offset is 0x234

Translate to 0xabcd_1234

Page 79 of RISC-V manual, volume2, v1.10
 https://github.com/yhzhang0128/egos-2000/blob/timer_example/references/riscv-privileged-v1.10.pdf

https://github.com/yhzhang0128/egos-2000/blob/timer_example/references/riscv-privileged-v1.10.pdf

Translate Step #1

Page table #1

Page table #2

Page table #3

VPN[1] is 0x200, or 10_0000_0000 in binary

VPN[0] is 0x001, or 00_0000_0001 in binary

Offset is 0x234

Translate to 0xabcd_1234 satp

The page table base CSR (satp)

stores the physical address of

Translate Step #2

Page table #1

Page table #2

Page table #3

VPN[1] is 0x200, or 10_0000_0000 in binary

VPN[0] is 0x001, or 00_0000_0001 in binary

Offset is 0x234

Translate to 0xabcd_1234 satp

Entry 0x200 of page table #1 stores

the physical address of page table #2

Entry 0x200 address

Translate Step #3

Page table #1

Page table #2

Page table #3 satp

Entry 0x001 of page table #2 stores

the physical address 0xabcd_1000

Entry 0x200 address

VPN[1] is 0x200, or 10_0000_0000 in binary

VPN[0] is 0x001, or 00_0000_0001 in binary

Offset is 0x234

Translate to 0xabcd_1234

Entry 0x001 0xabcd_1000

Translate Step #4

Page table #1

Page table #2

Page table #3 satp

0xabcd_1000 plus offset 0x234

gives 0xabcd_1234

Entry 0x200 address

VPN[1] is 0x200, or 10_0000_0000 in binary

VPN[0] is 0x001, or 00_0000_0001 in binary

Offset is 0x234

Translate to 0xabcd_1234

Entry 0x001 0xabcd_1000

Page table #3 is not used in this example

Page table #1

Page table #2

Page table #3 satp

But page table #3 may be used when

translating some other virtual addresses

Entry 0x200 address

VPN[1] is 0x200, or 10_0000_0000 in binary

VPN[0] is 0x001, or 00_0000_0001 in binary

Offset is 0x234

Translate to 0xabcd_1234

Entry 0x001 0xabcd_1000

Homework
• Read section 4.1.11 and 4.3

• 4.1.11 introduces the satp register

• 4.3 introduces the Sv32 translation process

• P3 will be due on Nov 4.

• Next lecture: disk driver and file system

• What is the problem?

• What is virtualization?

• Implement virtual memory

• mechanism #1: software TLB + PMP

• mechanism #2: page table translation

• Further discussion: how to read a code repository?

Agenda

