Virtual Memory and Page lables

for the optional part of P3

Agenda

=» What is the problem?

 What is virtualization?

* Implement virtual memory
* mechanism #1: software TLB + PMP
* mechanism #2: page table translation

* Further discussion: how to read a code repository??

compiles

’ compiles
&

Put the code at address 0x
and stack at address 0Ox

compiles

Put the code at address 0x
and stack at address 0x

compiles

OS suggests a standard layout

Win32 Memory Map
(simplified)

Low 0x00000000

e 32-bit Windows standard layout

* |t Is good to follow this standard,
but also possible not to follow

0x00400000

Program Image

* [here are may standards in the
systems industry

0x7FFDF000

e POSIX, ISO OSI, etc.

O0x7FFFFFFF

Addresses O0xFFFFFFFF

Good to follow the
memory layout standard!

compiles
—

Good to follow the
memory layout standard!

compiles

——————————————

But the problem is

Win32 Memory Map

(simplified)
ooy » The code section (program image)

ek efll starts at 0x0040 0000

* In physical memory, the OS can
only put the code section of one
process at this address

* § 0x00400000 #

Program Image

 But OS runs many processes!

0x7FFDF000

O0x7FFFFFFF

* Introduce virtual memory will help

High
Memory
Addresses OxFFFFFFFF

Agenda

 What is the problem?

=» What is virtualization?

* Implement virtual memory
* mechanism #1: software TLB + PMP
* mechanism #2: page table translation

* Further discussion: how to read a code repository??

An iImportant concept:
One-to-many virtualization

A computer has 3 mandatory pieces

268 PC2-5300U0-555 swlissbit®

, . * '
=~ MEU25664D6 .
I n tel B o168/ 200387(:7%5P - 0840
. B 4500010489

Made in Germany wem
™ 17 ﬁ
Core™ i7 i

I

L.
PO

o i e Sl sl
LE gj lge,e- ""QJ "E”" Qj nthE pree QJ

JiillliilllllllllIIIIIIIIIIIilIlIIiillllIIVI»IIIIIIIIIIIIIII-I.IIII-:-.

B"”"'
&

Scheduler is virtualizing the CPU

KEYNOTE

oA :

one physical CPU

— an illusion of many
virtual CPU

Virtualize

268 PC253000455 SWissbit®
MEU25664D6BC2ER-30R

601682 / 20037725 0540
4500010489 Made in Germany weem
$3%
: g 2 @wmaan 94v-2
} | . N o 31 rE 33
g 3 l
e — i
333
s 3 & 3 0 % s & i
N |_L1_ _]J_J.-I_LL _;J_]“LLL_ D) ': " Ll_Lt_ ‘_I'J_]I'LL‘[_ "_’_1_,'- “. -:_’_J_‘
e, . Bl = W e . i N o SNESE S Sl
‘ ~ AR AT AT AR AR AR RN RN RN AR RN @
3 : d

Virtual Memory

— an lllusion of
many virtual

one physical 55 o4
m e m O ry Virtual memory Virtual memory

address space #1 address space #2

\.

] , . 98 AR 82 98 /8 88 00 /2 oc [® :
..l I e : » B 26BPC253000-555 SWissbit®
1 1
I t | ' 3 F;OEPGZSSZSB ﬁc?oss%zsp R 0840 E
. . - D 4500010489 Made in Germany wmsm [N 2 e - = A At [

| COI'E“' i7 i i AR RROAAREY_ OROREREATOAR R RO 10 @

A .3

e N

PPPOPPOOPPOPIPPOI

File system Is virtualizing the

KEYNOTE
°
"’4‘|.

one physical disk

— an Illusion of
many Virtual diSkS (files) Files for zoom

Files for keynote

Virtualize
’ 1 ‘ 85 - 2 S0 S8 o0 o0] S0
s ¥ S 208PC28%00U0555 Swissbit®
B intel/ Y smcsn |, g
; ‘ : R 4500010489 Made in Germany weem
| Core™i7 i
J

PO °
POPS S

PP

Take-away
operating system = virtual CPU +
virtual memory + virtual disk

All are one-to-many virtualization here.

Further topics: 3 Types of Virtualization

* One-to-many virtualization
* e.g., operating system
 Many-to-one virtualization
e e.g., RAID, Spark
e A-to-B virtualization

e e.g., VMware Workstation, Windows Subsystem Linux

Agenda

 What is the problem?

e \What is virtualization?

*» Implement virtual memory
* mechanism #1: software TLB + PMP
* mechanism #2: page table translation

* Further discussion: how to read a code repository??

Virtual Memory Interface #1

// Allocate a physical memory page
int (*mmu_alloc)(int* frame_no, void** cached_addr);

// Free a physical memory page
int (*mmu_free)(1nt pid);

// The physical memory roughly looks like:

OS code, stack

Pages to be allocated or freed

Virtual Memory Interface #2

// Map a page 1n the address space of pid
// to a physical page (here called frame);

// Useful when creating a new process, such as zoom
int (*mmu_map)(1nt pid, 1nt , 1nt frame_no);

// Switch the address space to pid;
// Useful when switching the context to a process
int (*mmu_switch)(int pi1d); ag

Z00Im <

Virtual memory
address space #1

Just a brief recap of last week’s class

 What is the problem?

 What is virtualization?

* Implement virtual memory
=» mechanism #1: software TLB + PMP
* mechanism #2: page table translation

* Further discussion: how to read a code repository??

RUNNING and
code/data/heap of the RUNNING process

0x0800_5000

stack of the RUNNING process

0x8000_0000

All pages of all RUNNABLE processes Memory buffer

0x8000_4000

When creating a process

0x0800_5000
Allocate 5 pages in the memory buffer

and load the code/data of the new process.
mmu_alloc() and mmu_map() are involved.

0x8000_0000

All pages of all RUNNABLE processes

Memory buffer

0x8000_4000

mmu_switch() step1 inyiteld()

0x0800_5000

Write these 5 pages of the
previously running process

to the memory buffer.
0x8000_0000

All pages of all RUNNABLE processes

Memory buffer

0x8000_4000

mmu_switch() step2inyield()

0x0800_5000

Load the 5 pages of the next running
process from the memory buffer.

0x8000_0000

All pages of all RUNNABLE processes

Memory buffer

0x8000_4000

Agenda

 What is the problem?

 What is virtualization?

* Implement virtual memory
* mechanism #1: software TLB + PMP
=» mechanism #2: page table translation

* Further discussion: how to read a code repository??

FFor every process

Page table #1

Allocate 5 pages for code, stack, etc.
And In addition,

allocate some more pages, say 3, as page tables.
Page table #2

Page table #3

Memory Buffer

0x8000_4000

Example: 0x8000_1234 — Oxabcd_1234

Page table #1

0x8000_1234 is the virtual address of the process
Oxabcd_1234 Is the physical address in the memory Page table #2

Page table #3

Break down address 0x8000 1234

31 22 21 12 11 0
VPN|1] VPN|0] page offset
10 10 12

Page table #1

Figure 4.16: Sv32 virtual address.

VPN[1] is 0x200, or 10_0000_0000 in binary Page table #2
VPN|0] is 0x001, or 00_0000_0001 in binary
Offset is 0x234

Translate to Oxabcd 1234 Page table #3

Page 79 of RISC-V manual, volume2, v1.10
https://github.com/yhzhang0128/egos-2000/blob/timer example/references/riscv-privileged-v1.10.pdf

https://github.com/yhzhang0128/egos-2000/blob/timer_example/references/riscv-privileged-v1.10.pdf

Translate Step #1

31 22 21 12 11 0
VPN|[1] VPN|0] page offset

10 10 12

Figure 4.16: Sv32 virtual address.

VPN[1] is 0x200, or 10_0000_0000 in binary Page table #2
VPN|0] is 0x001, or 00_0000_0001 in binary
Offset is 0x234

Translate to Oxabcd 1234 -

The page table base CSR (satp)
stores the physical address of =p

Page table #3

Translate Step #2

31 22 21 12 11 0
VPN|[1] VPN|0] page offset
10 10 12

”
Entry 0x200 * *

VPN[1] is 0x200, or 10_0000_0000 in binary = mrwrsrer:
VPN[O0] is 0x001, or 00_0000_0001 in binary
Offset is 0x234

Translate to Oxabcd 1234 -

Entry 0x200 of page table #1 stores
the physical address of page table #2

Figure 4.16: Sv32 virtual address.

Page table #3

Translate Step #3

31 22 21 12 11 0

VPN|[1] VPN|0] page offset

10 10 12 *

Figure 4.16: Sv32 virtual address.
Entry 0x200 *

VPN[1] is 0x200, or 10_0000_0000 in binary Entry 0x00" *
VPN[O] is 0x001, or 00_0000_0001 in binary

Offset is 0x234 -
Translate to Oxabcd 1234 - Page table #3

Entry Ox001 of page table #2 stores
the physical address Oxabcd_1000

Page table #1

Translate Step #4

31 22 21 12 11 0
VPN|[1] VPN|0] page offset

10 10 12 *

Figure 4.16: Sv32 virtual address.
Entry 0x200 *

Entry 0x001 * Oxabcd_1000

Page table #1

VPN[1] is 0x200, or 10_0000_0000 in binary
VPN[O] is 0x001, or 00_0000_0001 in binary

Offset is 0x234 -

Page table #3

O Translate to Oxabcd 1234 -

Oxabcd_1000 plus offset 0x234
gives Oxabcd_1234

Page table #3 Is not used In this example

31 22 21 12 11 0
VPN|[1] VPN|0] page offset

10 10 12 *

Figure 4.16: Sv32 virtual address.
Entry 0x200 *

Entry 0x001 * Oxabcd_1000

Page table #1

VPN[1] is 0x200, or 10_0000_0000 in binary
VPN[O] is 0x001, or 00_0000_0001 in binary

Offset is 0x234 -

Page table #3

Translate to Oxabcd 1234 -

But page table #3 may be used when
translating some other virtual addresses

Homework

* Read section 4.1.11 and 4.3

* 4.1.11 Introduces the satp register

e 4.3 introduces the Sv32 translation process
* P3 will be due on Nov 4.

* Next lecture: disk driver and file system

Agenda

 What is the problem?

 What is virtualization?

* Implement virtual memory
* mechanism #1: software TLB + PMP
* mechanism #2: page table translation

=» Further discussion: how to read a code repository?

