
CPU Scheduling
(Chapters 7-11)

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George,
F.B. Schneider, E.G. Sirer, R. Van Renesse]

In this case:
• mechanism:

- context switch between processes

• policy:

- scheduling: which process to run next

An important principle in systems design

Separating Mechanism and Policy

2

1. Initialize devices
2. Initialize “first process”
3. while (TRUE) {

• while device interrupts pending
 - handle device interrupts
• while system calls pending
 - handle system calls
• if run queue is non-empty
 - select process and switch to it
• otherwise

 - wait for device interrupt
 }

Kernel Operation (conceptual, simplified)

3

1. Initialize devices
2. Initialize “first process”
3. while (TRUE) {

• while device interrupts pending
 - handle device interrupts
• while system calls pending
 - handle system calls
• if run queue is non-empty
 - select process and switch to it
• otherwise

 - wait for device interrupt
 }

Kernel Operation (conceptual, simplified)

4

Which

one??

You’re the cook at State Street Diner
• customers continuously enter and place

orders 24 hours a day
• dishes take varying amounts to prepare

What is your goal?
• minimize average turnaround time?
• minimize maximum turnaround time?

Which strategy achieves your goal?

The Problem

5

What if instead you are:

• the owner of an expensive container ship
and have cargo across the world

• the head nurse managing the waiting
room of the emergency room

• a student who has to do homework in
various classes, hang out with other
students, eat, and occasionally sleep

Different goals

6

• CPU Scheduler selects a process to run
from the run queue

• Disk Scheduler selects next read/write
operation

• Network Scheduler selects next packet to
send or process

• Page Replacement Scheduler selects
page to evict

Today we’ll focus on CPU Scheduling

Schedulers in the OS

7

Processes switch between CPU & I/O bursts

CPU-bound processes: Long CPU bursts

I/O-bound processes: Short CPU bursts

We will call the CPU bursts “jobs”
 (aka tasks)

Process Model

8

emacs

matrix

multiply

PowerPoint

Processes switch between CPU & I/O bursts

CPU-bound processes: Long CPU bursts

I/O-bound processes: Short CPU bursts

Problems:
• When and how long are the jobs?
• Processes can change over time

Process Model

9

emacs

matrix

multiply

PowerPoint

• Based on the durations of the past jobs
• Use past as a predictor of the future

No need to remember entire past history!
Use exponential moving average (aka low pass filter):
 tn actual duration of nth job
 n predicted duration of nth job
 n+1 predicted duration of (n+1)th job

 n+1 = n + (1 −) tn

0 1, determines weight placed on past behavior

Job duration Prediction

10

EMA examples

11

Job Arrival

• When the job was first submitted

 Job Execution time

• Time needed to run the job without contention

 Job Deadline

• When the job must have completed. Think videos, car

brakes, etc.

Job Characteristics

Important Metrics of Scheduling

13

Job arrival First scheduled Job Completed

Turnaround Time

Response Time

• Execution Time: sum of green periods
• Waiting Time: sum of red periods
• Turnaround Time: sum of both

Green: job of interest is running

Red: some other job is running

Turnaround time: How long?

• User-perceived time to complete some job

Response time: When does it start?

• User-perceived time before first output

Waiting Time: How much thumb-twiddling?

• Time on the run queue but not running

Performance Terminology

Predictability: How consistent?
• Low variance in turnaround time for repeated jobs

Overhead: How much useless work?
• Time lost due to switching between jobs

Fairness: How equal is performance?
• Equality in the resources given to each job

Starvation: How bad can it get?
• The lack of progress for one job, due to resources

given to higher priority jobs

More Performance Terminology

• Minimizes response time for each job
• Minimizes turnaround time for each job
• Provides predictable performance
• Maximizes utilization: keeps CPU and devices busy
• Is work-conserving
• if there is a job that wants to run, there is a job running

• Meets all deadlines
• Is starvation-free: no job starves
• Is envy-free:
• no job wants to switch its schedule with another job

• Has zero overhead

 No such scheduler exists!

The Perfect Scheduler

16

Non-preemptive
Job runs until it voluntarily yields CPU:
• process needs to wait (e.g., I/O or lock())
• process explicitly yields
• process terminates

Preemptive
All of the above, plus:
• Timer and other interrupts

- When jobs cannot be trusted to yield explicitly

• Incurs additional overhead

When does scheduler run?

17

• Cost of saving registers
• Plus cost of scheduler determining the

next process to run
• Plus cost of restoring registers

In addition, various caches may need to be
flushed (L1, L2, L3, TLB, …)

What is the context switch overhead?

18

19

Basic scheduling algorithms:

• First In First Out (FIFO)
• aka First Come First Served (FCFS)

• Shortest Job First (SJF)
• Earliest Deadline First (EDF)
• Round Robin (RR)
• Shortest Remaining Time First (SRTF)

Jobs P1, P2, P3 with execution time 12, 3, 3
All arrive at the same time (so can be scheduled in any order)

Scenario 1: schedule order P1, P2, P3

Scenario 2: schedule order P2, P3, P1

First In First Out (FIFO)

P1 P2 P3

Time 0 12 15 18Time 0

???

Average Turnaround Time:

P1P2 P3

183 6Time 0

20

Average Turnaround Time:

???

Jobs P1, P2, P3 with execution time 12, 3, 3
All arrive at the same time (so can be scheduled in any order)

Scenario 1: schedule order P1, P2, P3

Scenario 2: schedule order P2, P3, P1

First In First Out (FIFO)

P1 P2 P3

Time 0 12 15 18Time 0

(12+15+18)/3 = 15

Average Turnaround Time:

P1P2 P3

183 6Time 0

21

Average Turnaround Time:

???

Jobs P1, P2, P3 with execution time 12, 3, 3
All arrive at the same time (so can be scheduled in any order)

Scenario 1: schedule order P1, P2, P3

Scenario 2: schedule order P2, P3, P1

First In First Out (FIFO)

P1 P2 P3

Time 0 12 15 18Time 0

(12+15+18)/3 = 15

Average Turnaround Time:

P1P2 P3

183 6Time 0

22

Average Turnaround Time:

(3+6+18)/3 = 9

FIFO Roundup

23

The Good

The Bad

The Ugly

– Average turnaround time very
sensitive to schedule order

– Not responsive to
interactive jobs

+ Simple
+ Low-overhead
+ No Starvation

How to minimize average
turnaround time?

24

Schedule in order of execution time

Scenario : each job takes as long as its number

Shortest Job First (SJF)

Average Turnaround Time: (1+3+6+10+15)/5 = 7

P5P1 P2

151Time 0

P4P3

3 6 10

FIFO vs. SJF

26

Effect on the short jobs is huge.
Effect on the long job is small.
What is a disadvantage of SJF?

Schedule in order of execution time

Scenario : each job takes as long as its number

Would another schedule improve avg turnaround time?

Shortest Job First (SJF)

Average Turnaround Time: (1+3+6+10+15)/5 = 7

P5P1 P2

151Time 0

P4P3

3 6 10

• Let S be a schedule of a set of jobs
• Let j1 and j2 be two neighboring jobs in S

so that j1.exe-time > j2.exe-time
• Let S’ be S with j1 and j2 switched around
• S’ has lower average turnaround time
- because j1 will have the same turnaround time as j2

had before the switch while the turnaround time of j2
will be less than the one j1 had

• Repeat until sorted (i.e., bubblesort)
• Resulting schedule is SJF

Informal proof of optimal turnaround time

28

SJF Roundup

29

The Good

The Bad

The Ugly

– Pessimal variance in
turnaround time
– Needs estimate of
execution time

– Can starve long jobs

+ Optimal average
turnaround time

• Schedule in order of earliest deadline
• If a schedule exists that meets all deadlines, EDF

will generate such a schedule!
• does not even need to know the execution times of

the jobs

 Why is that?

Earliest Deadline First (EDF)

• Let S be a schedule of a set of jobs that
meets all deadlines

• Let j1 and j2 be two neighboring jobs in S
so that j1.deadline > j2.deadline

• Let S’ be S with j1 and j2 switched
• S’ also meets all deadlines

• Repeat until sorted (i.e., bubblesort)
• Resulting schedule is EDF

Informal proof

31

EDF Roundup

32

The Good

The Bad

The Ugly

– Does not optimize other
metrics

– Cannot decide when to run
jobs without deadlines

+ Meets deadlines if possible
+ Free of starvation

• Assign a number to each job and
schedule jobs in (increasing) order

• Can implement any scheduling policy
• e.g., reduces to SJF if n is used as priority

Generalization: Priority Scheduling

33

estimate of execution time

• Problem: some high priority process is waiting for
some low priority process
- maybe low priority process has a lock on some resource

• Solution: High priority process (needing lock)
temporarily donates priority to lower priority process
(with lock)

 “Priority Inheritance”

Priority Inversion

34

• Two approaches:
1. improve job’s priority with time (aging)

- FIFO and EDF do this implicitly

2. select jobs randomly weighted by priority

Avoiding Starvation

35

• Each job allowed to run for a quantum
• quantum = some configured period of time
• Improves response time!

• Context is switched (at the latest) at the end of the quantum
• Preemption!!

• Next job is the one on the run queue that hasn’t run for the
longest amount of time

What is a good quantum size?
• Too long, and it morphs into FIFO
• Too short, and time is wasted on context switching
• Typical quantum: about 100X cost of context switch (~100ms

vs. << 1 ms)

Round Robin (RR)

Round Robin vs. FIFO

38

Avg. turnaround?
Avg. response?

Optimal avg. turnaround time!

Jobs of same length that start at same time

Mixture of one I/O Bound processes + two CPU Bound Processes
I/O bound: compute, go to disk, repeat
→ RR (with long quanta) doesn’t seem so fair after all….

More Problems with Round Robin

39

compute go to disk

wait 190 ms………….

100 ms quanta100 ms quanta

100 ms quanta

compute go to disk

RR Roundup

40

The Good

The Bad

The Ugly

– Context switch overhead
– Mix of I/O and CPU bound

–bad avg. turnaround time
for equal length jobs

+ No starvation
+ Can reduce response time

• SJF + Preemption
• At end of each quantum, scheduler selects the job with

the least remaining time to run next
• Often this means the same job can run until completion,

avoiding context switch overhead
• But new short jobs still see an improved response time

Shortest Remaining Time First (SRTF)

SRTF Roundup

42

The Good

The Bad

The Ugly

– Needs estimate of
execution time of each job

– Suffers from starvation

+ Good for response time and
turnaround time of I/O-bound
processes

+ Low context switch overhead

Multi-Level Feedback Queue (MLFQ)

• Multiple levels of RR queue

• Jobs start at the top
• Use quantum? move down

• Don’t? Stay where you are

• Periodically all jobs back to top

• Approximates SRTF

Need parameters for:
• Number of queues

• Quantum length per queue

• Time to move jobs back up
44

Lowest priority

Highest priority

Quantum = 2

Quantum = 4

Quantum = 8

Quantum = 16

“Completely Fair Scheduler” (CFS)
Define “Spent Execution Time” (SET) to be the amount of time
that a process (not job) has been executing.
Let △ be some time constant (typically, 20-50ms or so).
1. Scheduler selects process with lowest SET
2. Let N be the number of processes on the run queue
3. Process runs for up to △/N time (there is a minimum value)

4. Update SET of the process
5. If it used up the quantum, reinsert into the run queue
6. Repeat
If a process is new or it sleeps and wakes up, then its new SET is
the maximum of its old SET and the minimum of the SETs of the
processes on the run queue

45

Gaming the Scheduler
Processes can cheat by
• splitting app into multiple processes
• periodically terminating and restarting
• yielding CPU just before quantum expires
• …

46

Multi-core Scheduling
Desirables:
• Balance load

-each job should get approximately the same
amount of CPU, no matter what core it runs on

• Scheduling affinity

-avoid moving processes between cores

• avoid wasting cache content (L1, TLB, etc.)

• Avoid access contention on run queue

-locking of run queue data structure

• avoid for scalability
47

Multi-core Scheduling Options

48

Single Shared

Queue

One Queue

Per Core

Balance Load

Scheduling Affinity

Avoid Contention

Multi-core Scheduling Options

49

Single Shared

Queue

One Queue

Per Core

Balance Load

Scheduling Affinity

Avoid Contention

Work stealing:

• Periodically balance the load between the cores

• Creates some loss of cache efficiency

• Creates some, but not much contention

	Slide 1: CPU Scheduling (Chapters 7-11)
	Slide 2: Separating Mechanism and Policy
	Slide 3: Kernel Operation (conceptual, simplified)
	Slide 4: Kernel Operation (conceptual, simplified)
	Slide 5: The Problem
	Slide 6: Different goals
	Slide 7: Schedulers in the OS
	Slide 8: Process Model
	Slide 9: Process Model
	Slide 10: Job duration Prediction
	Slide 11: EMA examples
	Slide 12: Job Characteristics
	Slide 13: Important Metrics of Scheduling
	Slide 14: Performance Terminology
	Slide 15: More Performance Terminology
	Slide 16: The Perfect Scheduler
	Slide 17: When does scheduler run?
	Slide 18: What is the context switch overhead?
	Slide 19
	Slide 20: First In First Out (FIFO)
	Slide 21: First In First Out (FIFO)
	Slide 22: First In First Out (FIFO)
	Slide 23: FIFO Roundup
	Slide 24: How to minimize average turnaround time?
	Slide 25: Shortest Job First (SJF)
	Slide 26: FIFO vs. SJF
	Slide 27: Shortest Job First (SJF)
	Slide 28: Informal proof of optimal turnaround time
	Slide 29: SJF Roundup
	Slide 30: Earliest Deadline First (EDF)
	Slide 31: Informal proof
	Slide 32: EDF Roundup
	Slide 33: Generalization: Priority Scheduling
	Slide 34: Priority Inversion
	Slide 35: Avoiding Starvation
	Slide 36: Round Robin (RR)
	Slide 38: Round Robin vs. FIFO
	Slide 39: More Problems with Round Robin
	Slide 40: RR Roundup
	Slide 41: Shortest Remaining Time First (SRTF)
	Slide 42: SRTF Roundup
	Slide 44: Multi-Level Feedback Queue (MLFQ)
	Slide 45: “Completely Fair Scheduler” (CFS)
	Slide 46: Gaming the Scheduler
	Slide 47: Multi-core Scheduling
	Slide 48: Multi-core Scheduling Options
	Slide 49: Multi-core Scheduling Options

