
Processes
(Chapters 3-6)

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George
Fred B. Schneider, E. Sirer, R. Van Renesse]

• A program consists of code and data
• specified in some programming language

• Typically stored in a file on disk
• “Running a program” = creating a process

• you can run a program multiple times!

- one after another or even concurrently

Process vs Program

2

An executable is a file containing:
• executable code

- CPU instructions

• data

- information manipulated by these instructions

• Obtained by compiling a program
• and linking with libraries

What is an “Executable”?

3

An executable running on an abstraction of a computer:

 - Address Space (memory) +

 Execution Context (registers incl. PC and SP)

 - manipulated through machine instructions

 - Environment (clock, files, network, …)

 - manipulated through system calls

What is a “Process”?

4

ADDRESS BUS

DATA BUS

CPU MEMORYENVIRONMENT syscall

An executable running on an abstraction of a computer:

 - Address Space (memory) +
 Execution Context (registers incl. PC and SP)
 - manipulated through machine instructions
 - Environment (clock, files, network, …)
 - manipulated through system calls

A good abstraction:
• is portable and hides implementation details
• has an intuitive and easy-to-use interface
• can be instantiated many times
• is efficient to implement

What is a “Process”?

5

A program is passive:
 code + data

A process is alive:
 changes data + registers + files + …

Same program can be run multiple time
simultaneously (1 program, 2 processes)

> ./program &
> ./program &

Process ≠ Program

6

A Day in the Life of a Program

7

sum.c

source files

...
0C40023C
21035000
1b80050c
8C048004
21047002
0C400020

...
10201000
21040330
22500102

...

0040 0000

1000 0000

.t
ex

t
.d

a
ta

m
a

in

max

#include <stdio.h>

int max = 10;

int main () {
 int sum = 0;
 add(max, &sum);
 printf(“%d”, sum);
 ...

}

Compiler
(+ Assembler + Linker)

executable

sum

“It’s alive!”
Loader

stack

text

data

heap

process

0x00000000

pid xxx

0x00400000

0x10000000

SPPC
0xffffffff

max

addi
jal

Logical view of process memory

8

0xffffffff

0x00000000

stack

text

data

heap

read-only text segment contains code and

constants

data segment contains global variables

heap used for memory allocation (malloc)

call stack

How many bits in an address for this CPU?

Why is address 0 not mapped?

segments

Review: stack (aka call stack)

9

int main(argc,

argv){

 …

 f(3.14)

 …

}

int f(x){

 …

 g();

 …

}

int g(y){

 …

}

stack frame for

main()

stack frame for

f()

stack frame for

g()

PC/IP

SP

FP

arguments (3.14)

return address

local variables

saved registers

saved FP (main)

scratch space

Review: heap

10

“break”

“free list” pointer to next

free chunk

in use

free

start of heap segment

end of data segment

NULL

• CPU, registers, memory allow you to
implement algorithms

• But how do you
❑ read input / write to screen
❑ create/read/write/delete files
❑ create new processes
❑ send/receive network packets
❑ get the time / set alarms
❑ terminate the current process

Environment

11

?

• A process runs on CPU
• Can access O.S. kernel

through “system calls”
• Skinny interface

- Why?

System Calls

12

• Portability
- easier to implement and maintain

- e.g., many implementations of “Posix” interface

• Security
- “small attack surface”: easier to protect against

vulnerabilities

not just the O.S. interface. Internet “IP” layer is
another good example of a skinny interface

Why a “skinny” interface?

13

Process:
1. Calls system call function in library
2. Places arguments in registers and/or pushes

them onto user stack
3. Places syscall type in a dedicated register
4. Executes syscall machine instruction

Kernel:
5. Executes syscall interrupt handler
6. Places result in dedicated register
7. Executes return_from_interrupt

Process:
8. Executes return_from_function

Executing a system call

14

Executing read System Call

15

int main(argc,

argv){

 …

 read(f)

 …

}

stack frame for

main()

PC

SP

user stack kernel

stackuser space

kernel space

note kernel stack empty while process running

Executing read System Call

16

int main(argc,

argv){

 …

 read(f)

 …

}

stack frame for

main()

stack frame for

_read
PC

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space

note kernel stack empty while process running

SP

Executing read System Call

17

int main(argc,

argv){

 …

 read(f)

 …

}

stack frame for

main()

stack frame for

_readSP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space

saved PC

saved mode

PCB

PC

sp:

HandleIntrSyscall:

 mov %sp, $pcb

 mov $stacktop, %sp

 push %Rn

 …

 call __handleSyscall

 …

 pop %Rn

 mov $pcb, %sp

 return_from_interrupt

Executing read System Call

18

int main(argc,

argv){

 …

 read(f)

 …

}

stack frame for

main()

stack frame for

_readSP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space

saved PC

saved mode

PCB

PC

sp:

HandleIntrSyscall:

 mov %sp, $pcb

 mov $stacktop, %sp

 push %Rn

 …

 call __handleSyscall

 …

 pop %Rn

 mov $pcb, %sp

 return_from_interrupt

Executing read System Call

19

int main(argc,

argv){

 …

 read(f)

 …

}

stack frame for

main()

stack frame for

_read

SP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space

saved PC

saved mode

PCB

PC

sp:

HandleIntrSyscall:

 mov %sp, $pcb

 mov $stacktop, %sp

 push %Rn

 …

 call __handleSyscall

 …

 pop %Rn

 mov $pcb, %sp

 return_from_interrupt

Executing read System Call

20

int main(argc,

argv){

 …

 read(f)

 …

}

stack frame for

main()

stack frame for

_read

SP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space

saved PC

saved mode

PCB

Rn

R1

…

PC

sp:

HandleIntrSyscall:

 mov %sp, $pcb

 mov $stacktop, %sp

 push %Rn

 …

 call __handleSyscall

 …

 pop %Rn

 mov $pcb, %sp

 return_from_interrupt

Executing read System Call

21

int main(argc,

argv){

 …

 read(f)

 …

}

stack frame for

main()

stack frame for

_read

SP
user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space HandleIntrSyscall:

 mov %sp, $pcb

 mov $stacktop, %sp

 push %Rn

 …

 call __handleSyscall

 …

 pop %Rn

 mov $pcb, %sp

 return_from_interrupt

saved PC

saved mode

PCB

int handleSyscall(int

type){

 switch (type) {

 case READ: …

 }

}

stack frame for

handleSyscall()

Rn

R1

…

PC

sp:

Executing read System Call

22

int main(argc,

argv){

 …

 read(f)

 …

}

stack frame for

main()

stack frame for

_read

SP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space HandleIntrSyscall:

 mov %sp, $pcb

 mov $stacktop, %sp

 push %Rn

 …

 call __handleSyscall

 …

 pop %Rn

 mov $pcb, %sp

 return_from_interrupt

saved PC

saved mode

PCB

Rn

R1

…

PC
sp:

Executing read System Call

23

int main(argc,

argv){

 …

 read(f)

 …

}

stack frame for

main()

stack frame for

_read

SP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space HandleIntrSyscall:

 mov %sp, $pcb

 mov $stacktop, %sp

 push %Rn

 …

 call __handleSyscall

 …

 pop %Rn

 mov $pcb, %sp

 return_from_interrupt

saved PC

saved mode

PCB
PCsp:

Executing read System Call

24

int main(argc,

argv){

 …

 read(f)

 …

}

stack frame for

main()

stack frame for

_readSP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space HandleIntrSyscall:

 mov %sp, $pcb

 mov $stacktop, %sp

 push %Rn

 …

 call __handleSyscall

 …

 pop %Rn

 mov $pcb, %sp

 return_from_interrupt

saved PC

saved mode

PCB

PC
sp:

Executing read System Call

25

int main(argc,

argv){

 …

 read(f)

 …

}

stack frame for

main()

stack frame for

_readSP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space HandleIntrSyscall:

 mov %sp, $pcb

 mov $stacktop, %sp

 push %Rn

 …

 call __handleSyscall

 …

 pop %Rn

 mov $pcb, %sp

 return_from_interrupt

saved PC

saved mode

PCB

PC

sp:

Executing read System Call

26

int main(argc,

argv){

 …

 read(f)

 …

}

stack frame for

main()SP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space

PC

Keep your eye on the balls!

27

when:

which:

running in

user space

right after

interrupt

during calling

C handler

just before

mret instruction

user PC PC mepc PCB.PC mepc

user SP SP SP PCB.SP SP

kernel PC interrupt vector PC PC PC

kernel SP PCB.stack[top] PCB.stack[top] SP PCB.stack[top]

Where are the values of the virtual PC and SP registers (RISC-V)?

Keep your eye on the balls!

28

when:

which:

running in

user space

right after

interrupt

during calling

C handler

just before

mret instruction

user PC PC mepc PCB.PC mepc

user SP SP SP PCB.SP SP

kernel PC interrupt vector PC PC PC

kernel SP PCB.stack[top] PCB.stack[top] SP PCB.stack[top]

Where are the values of the virtual PC and SP registers (RISC-V)?

How about the general-purpose registers?

• read may need to block if
➢reading from terminal
➢reading from disk and block not in cache
➢reading from remote file server

should run another process!
(note: kernel should not block!!!)

What if read needs to “block”?

29

How to run multiple processes?

(on a single core)

30

But somehow each process has its own:
◆ Registers
◆ Memory
◆ I/O resources
◆ “thread of control”

• even though there are usually more
processes than the CPU has cores
➔need to multiplex, schedule, … to create virtual

CPUs for each process

For now, assume we have a single core CPU

A process physically runs on the CPU

31

For each process, the OS has a PCB containing:

• location in memory (page table)
• location of executable on disk
• which user is executing this process (uid)
• process identifier (pid)
• process status (running, waiting, finished, etc.)
• scheduling information
• kernel stack
• saved user SP

• points into user stack

• saved kernel SP
• points into kernel stack
• kernel stack contains saved registers and kernel call stack for this

process

• … and more!

Process Control Block (PCB)

32

Process Life Cycle

33

Init

Runnable

Finished

Running

Waiting

Process creation

34

Runnable

Finished

Running

Waiting

Init

PCB status: being created
Registers: uninitialized

Process is Ready to Run

35

Finished

Running

Waiting

PCB: on Run Queue (aka Ready Queue)
Registers: pushed by kernel code onto kernel stack

Init

Admitted to
Run Queue

Runnable

Process is Running
(in supervisor mode, but may
return_from_interrupt to user mode)

36

Finished

Waiting

Init

Admitted to
Run Queue

Runnable dispatch Running

PCB: currently executing
Registers: popped from kernel stack into CPU

Process Yields (on clock interrupt)

37

Finished

Waiting

Init

Admitted to
Run Queue

Runnable dispatch Running

PCB: on Run queue
Registers: pushed onto kernel stack (sp saved in PCB)

yield

Process is Running Again!

38

Finished

Waiting

Init

Admitted to
Run Queue

Runnable dispatch Running

PCB: currently executing
Registers: sp restored from PCB; others restored from stack

yield

Process is Waiting

39

FinishedInit

Admitted to
Run Queue

Runnable dispatch Running

PCB: on specific waiting queue (file input, …)
Registers: on kernel stack

blocking call
e.g., read(), wait()

Waiting

yield

Process is Ready Again!

40

FinishedInit

Admitted to
Run Queue

Runnable dispatch Running

PCB: on run queue
Registers: on kernel stack

Waiting

blocking call
completion

yield

blocking call
e.g., read(), wait()

Process is Running Again!

41

FinishedInit

Admitted to
Run Queue

Runnable dispatch Running

PCB: currently executing
Registers: restored from kernel stack into CPU

Waiting

yield

blocking call
e.g., read(), wait()

blocking call
completion

done
exit()

Process is Finished (Process = Zombie)

42

Init

Admitted to
Run Queue

Runnable dispatch Running

PCB: on Finished queue, ultimately deleted
Registers: no longer needed

Waiting

Finishedyield

blocking call
e.g., read(), wait()

blocking call
completion

• At most 1 process is RUNNING at any time (per core)

• When CPU is in user mode, current process is RUNNING and
its kernel stack is empty

• If process is RUNNING
• its PCB is not on any queue
• however, not necessarily in user mode (when servicing interrupt)

• If process is RUNNABLE or WAITING
• its kernel stack is non-empty and can be switched to

- i.e., has its registers saved on top of the stack

• its PCB is either

- on the run queue (if RUNNABLE)

- on some wait queue (if WAITING)

• If process is FINISHED
- its PCB is on finished queue

Invariants to keep in mind

43

• Process cannot clean up itself
 WHY NOT?

• Process can be cleaned up
• either by any other process

- check for zombies just before returning to RUNNING state

• or by parent when it waits for it

- but what if the parent dies first?

• or by dedicated “reaper” process

• Linux uses combination:
• usually parent cleans up child process when waiting
• if parent dies before child, child process is inherited by the

initial process, which never dies and is continually waiting

Cleaning up zombies

44

Switching from executing the current process
to another runnable process

- Process 1 goes from RUNNING → RUNNABLE/WAITING

- Process 2 goes from RUNNABLE → RUNNING
1. save kernel registers of process 1 on its kernel stack
2. save kernel sp of process 1 in its PCB
3. restore kernel sp of process 2 from its PCB
4. restore kernel registers from its kernel stack

How To Yield/Wait?

45

ctx_switch:
 addi sp,sp,-64 // reserve frame
 sw s0,4(sp)
 sw s1,8(sp)
 sw s2,12(sp)
 sw s3,16(sp)
 sw s4,20(sp)
 sw s5,24(sp)
 sw s6,28(sp)
 sw s7,32(sp)
 sw s8,36(sp)
 sw s9,40(sp)
 sw s10,44(sp)
 sw s11,48(sp)
 sw ra,52(sp) // save return addr
 sw sp,0(a0) // save old sp
 mv sp,a1 // set new sp
 lw s0,4(sp)
 lw s1,8(sp)
 lw s2,12(sp)
 lw s3,16(sp)
 lw s4,20(sp)
 lw s5,24(sp)
 lw s6,28(sp)
 lw s7,32(sp)
 lw s8,36(sp)
 lw s9,40(sp)
 lw s10,44(sp)
 lw s11,48(sp)
 lw ra,52(sp) // return addr
 addi sp,sp,64 // free frame
 ret // return

ctx_switch(&old_sp, new_sp)

46

USAGE:

struct pcb *current, *next;

void yield(){
 assert(current->state == RUNNING);
 current->state = RUNNABLE;
 runQueue.add(current);
 next = scheduler();
 next->state = RUNNING;
 ctx_switch(¤t->sp, next->sp)
 current = next;
 assert(current->state == RUNNING);
}

(author: Yunhao Zhang)

• scheduler() would return NULL and things blow up
• solution: always run a low priority process that sits in an infinite

loop executing the RISC-V WFI (Wait For Interrupt) or x86 HLT
instruction or ... (fill in your favorite CPU)
- which waits for the next interrupt, saving energy when there’s nothing to do

What if there are no more RUNNABLE processes?

47

1. Interrupt: From user to kernel space
- system call, exception, or interrupt

2. Yield: In kernel space, between two processes
- happens inside the kernel, switching from one PCB/kernel stack to another

3. Return-From-Interrupt: From kernel space to user space
- Through a return_from_interrupt instruction

Note that each involves a stack switch:

1. Px user stack → Px kernel stack

2. Px kernel stack → Py kernel stack

3. Py kernel stack → Py user stack

A context is ”the CPU state,” which is captured in
its registers. By context switching, the CPU can
play different roles at different times

Three “kinds” of context switches

48

Example switch between processes

49

User

Space

Kernel

Space

Process X Process Y

1

read(file)

disk_read()2

3

return

from

interrupt

resume

before step 2: scheduler picks a runnable process

1. save process X

user registers

2. save process X

kernel registers

and restore

process Y kernel

registers

3. restore process Y

user registers

• We manage complexity through abstraction
• When I say “tea water,” I mean the water that is used for tea

• but it’s just water
• that same water will serve different purposes in its existence

• When I say “kernel memory,” I mean the memory that is used for
the kernel
• but it’s just memory
• it’s the same kind of memory that is used for processes

• Actors in a play: same actors can play multiple roles in their
lives, sometimes even in the same play
• actors are time multiplexed, same as registers of a CPU
• the kernel SP is just the SP that is used by the kernel
• when you’re watching “Woman King,” you’re supposed to

imagine seeing Nanisca, not Viola Davis

A word on “abstraction”

50

• Abstract computer with abstract
memory, registers, and peripherals

• Some “hardware” computer can be
multiplexed to run multiple processes
• time multiplexed: registers
• space multiplexed: disk

A “process” is an abstraction

51

• A process is an abstraction of a computer
• A context captures the state of the

processor:
• registers (including PC and SP)

• The implementation uses two contexts:
• user context
• kernel (supervisor) context

• A Process Control Block (PCB) is a kernel
data structure that saves contexts and
has other information about the process

Review

52

System calls to create a new process

53

Windows:
CreateProcess(…);

UNIX (Linux):
 fork() + exec(…)

System Call:

if (!CreateProcess(
 NULL, // No module name (use command line)
 argv[1],// Command line
 NULL, // Process handle not inheritable
 NULL, // Thread handle not inheritable
 FALSE, // Set handle inheritance to FALSE
 0, // No creation flags
 NULL, // Use parent's environment block
 NULL, // Use parent's starting directory
 &si, // Pointer to STARTUPINFO structure
 &pi) // Ptr to PROCESS_INFORMATION structure
)

CreateProcess (Simplified)

54[Windows]

System Call:

int pid = fork(void ☺
 NULL, // No module name (use command line)
 argv[1],// Command line
 NULL, // Process handle not inheritable
 NULL, // Thread handle not inheritable
 FALSE, // Set handle inheritance to FALSE
 0, // No creation flags
 NULL, // Use parent's environment block
 NULL, // Use parent's starting directory
 &si, // Pointer to STARTUPINFO structure
 &pi)
)

CreateProcess (Simplified)

55

fork (actual form)

[UNIX]
pid = process identifier

fork():

• Allocate ProcessID

• Create & initialize PCB

• Create and initialize a new address space

• Inform scheduler that new process is ready to run

exec(program, arguments):

• Load the program into the address space

• Copy arguments into memory in address space

• Initialize h/w context to start execution at “start”

Windows createProcess(…) does both

Kernel actions to create a process

56

Creating and Managing Processes

57[UNIX]

fork()
Create a child process as a clone of the current

process. Returns to both parent and child. Returns
child pid to parent process, 0 to child process.

exec
(prog, args)

Run the application prog in the current process

with the specified arguments (replacing any code
and data that was in the process already)

wait
(&status)

Pause until a child process has exited

exit
(status)

Tell the kernel the current process is complete and

should be garbage collected.

kill
(pid, type)

Send an interrupt of a specified type to a process.

(a bit of a misnomer, no?)

[UNIX]

Fork + Exec

58

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

PC

?

Program A
Process 1

[UNIX]

child_pid

Fork + Exec

59

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

PC

42

Program A
Process 1

[UNIX]

child_pid

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

PC

0

Program A
Process 42

child_pid

fork returns
twice!

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

Fork + Exec

60

PC

Program A
Process 1

[UNIX]

PC

Program A
Process 42

Waits until child exits.
42child_pid

0child_pid

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

42child_pid

0child_pid

Fork + Exec

61

PC

Program A
Process 1

[UNIX]

PC

Program A
Process 42

if and else
both executed!

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

42child_pid

Fork + Exec

62

PC

Program A
Process 1

[UNIX]

main() {
 ...

 exit(3);
}

PC

Program B
Process 42

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

42child_pid

Fork + Exec

63

PC

Program A
Process 1

[UNIX]

status 3

#include <stdio.h>

#include <unistd.h>

int main() {

int child_pid = fork();

if (child_pid == 0) { // child process

printf("I am process %d\n", getpid());

 }

 else { // parent process.

printf("I am the parent of process %d\n", child_pid);

 }

 return 0;

}

Code example (fork.c)

64

Possible outputs?

Shell

65

• is an interpreter (i.e., just another program)
• language allows user to create/manage programs
• Example shells:

• sh Original Unix shell (Stephen Bourne,
 AT&T Bell Labs, 1977)
• bash “Bourne-Again” Shell (free, Linux, MacOSX)
• cmd Windows shell (Therese Stowell,
 Microsoft, 1987)
• PowerShell (2006)
• …

What is a Shell?

66

Runs at user-level. Uses syscalls: fork, exec, etc.

• Reads lines of input
• command [arg1 …]

• And executes them
• Full programming language in its own right
• Programs are functions you can call!
• e.g. (sh, bash):

 $ for student in aa12 klm666 xyz32
 > do
 > echo $student # echo is a print command
 $ if gcc $student/program.c
 > then echo program of $student compiled!
 > else echo program of $student is broken
 > fi
 > done

What is a Shell?

67

• Reads lines of input
• command [arg1 …]

• And executes them
• Full programming language in its own right
• Programs are functions you can call!
• e.g. (sh, bash):

 $ for student in `ls Submissions`
 > do
 > echo $student # echo is a print command
 $ if gcc $student/program.c
 > then echo program of $student compiled!
 > else echo program of $student is broken
 > fi
 > done

What is a Shell?

68

Folder with one

subfolder per student
(this is what CMSX gives me)

• arguments to command that start with ‘-’
• this is a convention, not a rule

• examples:
• ls –l # long listing
• ps –a # print all processes

“flags” (aka options)

69

• Just like other programming languages
• State includes:
• environment variables
• home directory (directory == folder)

• working directory
• list of processes

• Commands often modify the state

Shell has state

70

• Each process has access to a collection of
environment variables
• implicit arguments to the process

• Each env variable has a name and a value
• both are strings

• One env variable is the search “path”
• list of folders/directories to find executables

• For example:
• PATH=/bin:/usr/bin:/usr/local/bin
• export PATH
• echo $PATH

Environment Variables

71

• echo [args] # print arguments
• man cmd # print manual page for cmd
• ls [-l] # list the working directory
• pwd # print working directory
• cd [dir] # change working directory

- default is “home” directory

• ps [-axl] # list running processes
• kill [-SIG] PID # send signal to process PID

 # signal 9 terminates PID

$x evaluates to the value of variable x

Some important sh commands

72

The shell either
• is reading from standard input
• is waiting for a process to finish

- this is the foreground process

- other processes are background processes

• To start a background process, add ‘&’
• e.g.: (sleep 5; echo hello)&

“foreground” vs. “background”

73

Background processes should not read from standard input!

 Why not?

• x | y
• runs both x and y in foreground
• output of x is input to y
• finishes when both x and y finish

• e.g.: echo robbert | tr b B

Pipelines

74

Threads! (Chapters 25-27)

89

Other terms for threads:
• Lightweight Process
• Thread of Control
• Task

Stack

What happens when…

90

Mail

Kernel

PCBs

0x00000000

0xFFFFFFFF

Apache wants to run multiple
concurrent computations?

Apache

Emacs

ApacheTwo heavyweight address
spaces for two concurrent
computations

Hard to share cache, etc.

Heap

Data

Insns

Stack

Heap

Data

Insns

Physical address space
Each process’ address space by color
(shown contiguous to look nicer)

Stack 1

Idea

910x00000000

0xFFFFFFFF

ApacheHeap

Data

Insns

Stack 2

Place concurrent
computations in the
same address space!

Mail

Kernel

PCBs

Emacs

• A process is an abstraction of a computer

➢CPU, memory, devices

• A thread is an abstraction of a core

➢registers (incl. PC and SP)

 Unbounded #computers, each with unbounded #cores

- Different processes typically have their own (virtual) memory, but
different threads share virtual memory.

- Different processes tend to be mutually distrusting, but threads
must be mutually trusting. Why?

Process vs. Thread Abstraction

92

Virtual Memory Layout

93

Data

Code

Stack 1

PC

Thread 1

PC

PC

SP
Stack 2

Thread 2
SP

Stack 3

Thread 3

SP

Concurrency
• exploiting multiple CPUs/cores

Mask long latency of I/O
• doing useful work while waiting

Responsiveness
• high priority GUI threads / low priority work threads

Encourages natural program structure
• Expressing logically concurrent tasks

• update screen, fetching data, receive user input

Why Threads?

94

Web server thread:
1. get network message (URL) from client

2. get URL data from disk

3. compose response

4. send response

Two Thread Examples

95

for (k = 0; k < n; k++) {
 a[k] = b[k] × c[k] + d[k] × e[k]
}

Simple Thread API

96

void
thread_create

(func,arg)

Creates a new thread that will execute function
func with the arguments arg

void
thread_yield()

Calling thread gives up processor. Scheduler can
resume running this thread at any point.

void
thread_exit()

Finish caller

• Two kinds of threads:
• Non-preemptive: explicitly yield to other threads
• Preemptive: yield automatically upon clock interrupts

• Most modern threading systems are preemptive
- but not 4411 P1 project

Preemption

97

One abstraction, two implementations:
1. “kernel threads”: each thread has its

own PCB in the kernel, but the PCBs
point to the same physical memory

2. “user threads”: one PCB for the process;
threads implemented entirely in user
space. Each thread has its own Thread
Control Block (TCB) and context

Implementation of Threads

98

Kernel knows about and schedules
threads (just like processes)

#1: Kernel-Level Threads

99

Stack 1

0x00000000

0xFFFFFFFF

ApacheHeap

Data

Insns

Stack 2

Mail

Kernel

PCBs

Emacs

• Separate PCB for each thread
• PCBs have:

• same: page table base
register

• different: PC, SP, registers,
kernel stack

Run mini-OS in user space
• Real OS unaware of threads
• Single PCB
• Thread Control Block (TCB)

for each thread

Usually more efficient
than kernel-level threads
(Why? See next slide)

But kernel-level threads
simplify system call handling
and scheduling (Why?)

#2: User-Level Threads

1000x00000000

0xFFFFFFFF

Apache

Mail

Kernel

PCBs

Emacs

Heap +

Stacks

Data

Insns

“the” stack

Kernel vs User Thread Switch

101

User

Space

Kernel

Space

Thread X Thread Y

K

1

K2

K

3

U

Kernel- vs User-level Threads

102

Kernel-Level Threads User-level Threads

• Easy to implement: just

processes with shared

page table

• Requires user-level

context switches,

scheduler

• Threads can run blocking

system calls concurrently

• Blocking system call

blocks all threads: needs

O.S. support for non-

blocking system calls

• Thread switch requires

three context switches

• Thread switch efficiently

implemented in user space

Do not presume to know the schedule

103

Synchronization
Matters!

	Slide 1: Processes (Chapters 3-6)
	Slide 2: Process vs Program
	Slide 3: What is an “Executable”?
	Slide 4: What is a “Process”?
	Slide 5: What is a “Process”?
	Slide 6: Process ≠ Program
	Slide 7: A Day in the Life of a Program
	Slide 8: Logical view of process memory
	Slide 9: Review: stack (aka call stack)
	Slide 10: Review: heap
	Slide 11: Environment
	Slide 12: System Calls
	Slide 13: Why a “skinny” interface?
	Slide 14: Executing a system call
	Slide 15: Executing read System Call
	Slide 16: Executing read System Call
	Slide 17: Executing read System Call
	Slide 18: Executing read System Call
	Slide 19: Executing read System Call
	Slide 20: Executing read System Call
	Slide 21: Executing read System Call
	Slide 22: Executing read System Call
	Slide 23: Executing read System Call
	Slide 24: Executing read System Call
	Slide 25: Executing read System Call
	Slide 26: Executing read System Call
	Slide 27: Keep your eye on the balls!
	Slide 28: Keep your eye on the balls!
	Slide 29: What if read needs to “block”?
	Slide 30: How to run multiple processes? (on a single core)
	Slide 31: A process physically runs on the CPU
	Slide 32: Process Control Block (PCB)
	Slide 33: Process Life Cycle
	Slide 34: Process creation
	Slide 35: Process is Ready to Run
	Slide 36: Process is Running (in supervisor mode, but may return_from_interrupt to user mode)
	Slide 37: Process Yields (on clock interrupt)
	Slide 38: Process is Running Again!
	Slide 39: Process is Waiting
	Slide 40: Process is Ready Again!
	Slide 41: Process is Running Again!
	Slide 42: Process is Finished (Process = Zombie)
	Slide 43: Invariants to keep in mind
	Slide 44: Cleaning up zombies
	Slide 45: How To Yield/Wait?
	Slide 46: ctx_switch(&old_sp, new_sp)
	Slide 47: What if there are no more RUNNABLE processes?
	Slide 48: Three “kinds” of context switches
	Slide 49: Example switch between processes
	Slide 50: A word on “abstraction”
	Slide 51: A “process” is an abstraction
	Slide 52: Review
	Slide 53: System calls to create a new process
	Slide 54: CreateProcess (Simplified)
	Slide 55: CreateProcess (Simplified)
	Slide 56: Kernel actions to create a process
	Slide 57: Creating and Managing Processes
	Slide 58: Fork + Exec
	Slide 59: Fork + Exec
	Slide 60: Fork + Exec
	Slide 61: Fork + Exec
	Slide 62: Fork + Exec
	Slide 63: Fork + Exec
	Slide 64: Code example (fork.c)
	Slide 65: Shell
	Slide 66: What is a Shell?
	Slide 67: What is a Shell?
	Slide 68: What is a Shell?
	Slide 69: “flags” (aka options)
	Slide 70: Shell has state
	Slide 71: Environment Variables
	Slide 72: Some important sh commands
	Slide 73: “foreground” vs. “background”
	Slide 74: Pipelines
	Slide 89: Threads! (Chapters 25-27)
	Slide 90: What happens when…
	Slide 91: Idea
	Slide 92: Process vs. Thread Abstraction
	Slide 93: Virtual Memory Layout
	Slide 94: Why Threads?
	Slide 95: Two Thread Examples
	Slide 96: Simple Thread API
	Slide 97: Preemption
	Slide 98: Implementation of Threads
	Slide 99: #1: Kernel-Level Threads
	Slide 100: #2: User-Level Threads
	Slide 101: Kernel vs User Thread Switch
	Slide 102: Kernel- vs User-level Threads
	Slide 103: Do not presume to know the schedule

