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• A program consists of code and data
• specified in some programming language

• Typically stored in a file on disk
• “Running a program” = creating a process

• you can run a program multiple times!

- one after another or even concurrently

Process vs Program
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An executable is a file containing:
• executable code

- CPU instructions

• data

- information manipulated by these instructions 

• Obtained by compiling a program
• and linking with libraries

What is an “Executable”?
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An executable running on an abstraction of a computer:  

 - Address Space (memory) +

   Execution Context (registers incl. PC and SP)

  - manipulated through machine instructions

 - Environment (clock, files, network, …)

  - manipulated through system calls

What is a “Process”?
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ADDRESS BUS

DATA BUS

CPU MEMORYENVIRONMENT syscall



An executable running on an abstraction of a computer:  

 - Address Space (memory) +
   Execution Context (registers incl. PC and SP)
  - manipulated through machine instructions
 - Environment (clock, files, network, …)
  - manipulated through system calls

A good abstraction:
• is portable and hides implementation details
• has an intuitive and easy-to-use interface
• can be instantiated many times
• is efficient to implement

What is a “Process”?
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A program is passive:
 code + data

A process is alive:
 changes data + registers + files + …

Same program can be run multiple time 
simultaneously (1 program, 2 processes)

> ./program &
> ./program &

Process ≠ Program
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A Day in the Life of a Program
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sum.c

source files

...
0C40023C
21035000
1b80050c
8C048004
21047002
0C400020

...
10201000
21040330
22500102

...

0040 0000

1000 0000

.t
ex

t
.d

a
ta

m
a

in

max

#include <stdio.h>

int max = 10;

int main () {
   int sum = 0;
   add(max, &sum);
   printf(“%d”, sum); 
   ...

}

Compiler
(+ Assembler + Linker)

executable

sum

“It’s alive!”
Loader

stack

text

data

heap

process

0x00000000

pid xxx

0x00400000

0x10000000

SPPC
0xffffffff

max 

addi
jal



Logical view of process memory
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0xffffffff

0x00000000

stack

text

data

heap

read-only text segment contains code and 

constants

data segment contains global variables

heap used for memory allocation (malloc)

call stack

How many bits in an address for this CPU?

Why is address 0 not mapped?

segments



Review: stack (aka call stack)
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int main(argc, 

argv){

 …

 f(3.14)

 …

}

int f(x){

 …

 g();

 …

}

int g(y){

 …

}

stack frame for 

main()

stack frame for 

f()

stack frame for 

g()

PC/IP

SP

FP

arguments (3.14)

return address

local variables

saved registers

saved FP (main)

scratch space



Review: heap
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“break”

“free list” pointer to next 

free chunk

in use

free

start of heap segment

end of data segment 

NULL



• CPU, registers, memory allow you to 
implement algorithms

• But how do you
❑ read input / write to screen
❑ create/read/write/delete files
❑ create new processes
❑ send/receive network packets
❑ get the time / set alarms
❑ terminate the current process

Environment
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• A process runs on CPU
• Can access O.S. kernel 

through “system calls”
• Skinny interface

- Why?

System Calls
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• Portability
- easier to implement and maintain

- e.g., many implementations of “Posix” interface

• Security
- “small attack surface”: easier to protect against 

vulnerabilities

not just the O.S. interface.  Internet “IP” layer is 
another good example of a skinny interface

Why a “skinny” interface?
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Process:
1. Calls system call function in library
2. Places arguments in registers and/or pushes 

them onto user stack
3. Places syscall type in a dedicated register
4. Executes syscall machine instruction

Kernel:
5. Executes syscall interrupt handler
6. Places result in dedicated register
7. Executes return_from_interrupt

Process:
8. Executes return_from_function

Executing a system call
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Executing read System Call
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int main(argc, 

argv){

 …

 read(f)

 …

}

stack frame for 

main()

PC

SP

user stack kernel

stackuser space

kernel space

note kernel stack empty while process running



Executing read System Call
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int main(argc, 

argv){

 …

 read(f)

 …

}

stack frame for 

main()

stack frame for 

_read
PC

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space

note kernel stack empty while process running

SP



Executing read System Call
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int main(argc, 

argv){

 …

 read(f)

 …

}

stack frame for 

main()

stack frame for 

_readSP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space

saved PC

saved mode

PCB

PC

sp:

HandleIntrSyscall:

  mov %sp, $pcb

  mov $stacktop, %sp

  push %Rn

  …

  call __handleSyscall 

  …

  pop %Rn

  mov $pcb, %sp

  return_from_interrupt



Executing read System Call
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int main(argc, 

argv){

 …

 read(f)

 …

}

stack frame for 

main()

stack frame for 

_readSP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space

saved PC

saved mode

PCB

PC

sp:

HandleIntrSyscall:

  mov %sp, $pcb

  mov $stacktop, %sp

  push %Rn

  …

  call __handleSyscall 

  …

  pop %Rn

  mov $pcb, %sp

  return_from_interrupt



Executing read System Call
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int main(argc, 

argv){

 …

 read(f)

 …

}

stack frame for 

main()

stack frame for 

_read

SP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space

saved PC

saved mode

PCB

PC

sp:

HandleIntrSyscall:

  mov %sp, $pcb

  mov $stacktop, %sp

  push %Rn

  …

  call __handleSyscall 

  …

  pop %Rn

  mov $pcb, %sp

  return_from_interrupt



Executing read System Call
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int main(argc, 

argv){

 …

 read(f)

 …

}

stack frame for 

main()

stack frame for 

_read

SP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space

saved PC

saved mode

PCB

Rn

R1

…

PC

sp:

HandleIntrSyscall:

  mov %sp, $pcb

  mov $stacktop, %sp

  push %Rn

  …

  call __handleSyscall 

  …

  pop %Rn

  mov $pcb, %sp

  return_from_interrupt



Executing read System Call
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int main(argc, 

argv){

 …

 read(f)

 …

}

stack frame for 

main()

stack frame for 

_read

SP
user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space HandleIntrSyscall:

  mov %sp, $pcb

  mov $stacktop, %sp

  push %Rn

  …

  call __handleSyscall 

  …

  pop %Rn

  mov $pcb, %sp

  return_from_interrupt

saved PC

saved mode

PCB

int handleSyscall(int 

type){

 switch (type) {

 case READ: …

 }

}

stack frame for 

handleSyscall()

Rn

R1

…

PC

sp:



Executing read System Call

22

int main(argc, 

argv){

 …

 read(f)

 …

}

stack frame for 

main()

stack frame for 

_read

SP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space HandleIntrSyscall:

  mov %sp, $pcb

  mov $stacktop, %sp

  push %Rn

  …

  call __handleSyscall 

  …

  pop %Rn

  mov $pcb, %sp

  return_from_interrupt

saved PC

saved mode

PCB

Rn

R1

…

PC
sp:



Executing read System Call
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int main(argc, 

argv){

 …

 read(f)

 …

}

stack frame for 

main()

stack frame for 

_read

SP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space HandleIntrSyscall:

  mov %sp, $pcb

  mov $stacktop, %sp

  push %Rn

  …

  call __handleSyscall 

  …

  pop %Rn

  mov $pcb, %sp

  return_from_interrupt

saved PC

saved mode

PCB
PCsp:



Executing read System Call
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int main(argc, 

argv){

 …

 read(f)

 …

}

stack frame for 

main()

stack frame for 

_readSP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space HandleIntrSyscall:

  mov %sp, $pcb

  mov $stacktop, %sp

  push %Rn

  …

  call __handleSyscall 

  …

  pop %Rn

  mov $pcb, %sp

  return_from_interrupt

saved PC

saved mode

PCB

PC
sp:



Executing read System Call
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int main(argc, 

argv){

 …

 read(f)

 …

}

stack frame for 

main()

stack frame for 

_readSP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space HandleIntrSyscall:

  mov %sp, $pcb

  mov $stacktop, %sp

  push %Rn

  …

  call __handleSyscall 

  …

  pop %Rn

  mov $pcb, %sp

  return_from_interrupt

saved PC

saved mode

PCB

PC

sp:



Executing read System Call
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int main(argc, 

argv){

 …

 read(f)

 …

}

stack frame for 

main()SP

user stack kernel

stack

_read:

 mov READ, %R0

 syscall

 return

user space

kernel space

PC



Keep your eye on the balls!
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when:

which:

running in 

user space

right after 

interrupt

during calling 

C handler

just before

mret instruction

user PC PC mepc PCB.PC mepc

user SP SP SP PCB.SP SP

kernel PC interrupt vector PC PC PC

kernel SP PCB.stack[top] PCB.stack[top] SP PCB.stack[top]

Where are the values of the virtual PC and SP registers (RISC-V)?



Keep your eye on the balls!
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when:

which:

running in 

user space

right after 

interrupt

during calling 

C handler

just before

mret instruction

user PC PC mepc PCB.PC mepc

user SP SP SP PCB.SP SP

kernel PC interrupt vector PC PC PC

kernel SP PCB.stack[top] PCB.stack[top] SP PCB.stack[top]

Where are the values of the virtual PC and SP registers (RISC-V)?

How about the general-purpose registers?



• read may need to block if
➢reading from terminal
➢reading from disk and block not in cache
➢reading from remote file server

should run another process!
(note: kernel should not block!!!)

What if read needs to “block”?
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How to run multiple processes?

(on a single core)
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But somehow each process has its own:
◆ Registers
◆ Memory
◆ I/O resources
◆ “thread of control”

• even though there are usually more 
processes than the CPU has cores
➔need to multiplex, schedule, … to create virtual 

CPUs for each process

For now, assume we have a single core CPU

A process physically runs on the CPU
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For each process, the OS has a PCB containing:

• location in memory (page table)
• location of executable on disk
• which user is executing this process (uid)
• process identifier (pid)  
• process status (running, waiting, finished, etc.)
• scheduling information
• kernel stack
• saved user SP

• points into user stack

• saved kernel SP
• points into kernel stack
• kernel stack contains saved registers and kernel call stack for this 

process

• … and more!

Process Control Block (PCB)
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Process Life Cycle
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Init

Runnable

Finished

Running

Waiting



Process creation
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Runnable

Finished

Running

Waiting

Init

PCB status: being created
Registers: uninitialized



Process is Ready to Run
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Finished

Running

Waiting

PCB: on Run Queue (aka Ready Queue)
Registers: pushed by kernel code onto kernel stack

Init

Admitted to 
Run Queue

Runnable



Process is Running
(in supervisor mode, but may 
return_from_interrupt to user mode)
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Finished

Waiting

Init

Admitted to 
Run Queue

Runnable dispatch Running

PCB: currently executing
Registers: popped from kernel stack into CPU



Process Yields (on clock interrupt)
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Finished

Waiting

Init

Admitted to 
Run Queue

Runnable dispatch Running

PCB: on Run queue
Registers: pushed onto kernel stack (sp saved in PCB)

yield



Process is Running Again!
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Finished

Waiting

Init

Admitted to 
Run Queue

Runnable dispatch Running

PCB: currently executing
Registers: sp restored from PCB; others restored from stack

yield



Process is Waiting
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FinishedInit

Admitted to 
Run Queue

Runnable dispatch Running

PCB: on specific waiting queue (file input, …)
Registers: on kernel stack

blocking call
e.g., read(), wait()

Waiting

yield



Process is Ready Again!
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FinishedInit

Admitted to 
Run Queue

Runnable dispatch Running

PCB: on run queue
Registers: on kernel stack

Waiting

blocking call
completion

yield

blocking call
e.g., read(), wait()



Process is Running Again!
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FinishedInit

Admitted to 
Run Queue

Runnable dispatch Running

PCB: currently executing
Registers: restored from kernel stack into CPU

Waiting

yield

blocking call
e.g., read(), wait()

blocking call
completion



done
exit()

Process is Finished (Process = Zombie)
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Init

Admitted to 
Run Queue

Runnable dispatch Running

PCB: on Finished queue, ultimately deleted
Registers: no longer needed

Waiting

Finishedyield

blocking call
e.g., read(), wait()

blocking call
completion



• At most 1 process is RUNNING at any time (per core)

• When CPU is in user mode, current process is RUNNING and 
its kernel stack is empty

• If process is RUNNING
• its PCB is not on any queue
• however, not necessarily in user mode (when servicing interrupt)

• If process is RUNNABLE or WAITING
• its kernel stack is non-empty and can be switched to

- i.e., has its registers saved on top of the stack

• its PCB is either

- on the run queue (if RUNNABLE)

- on some wait queue (if WAITING)

• If process is FINISHED
- its PCB is on finished queue

Invariants to keep in mind
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• Process cannot clean up itself
   WHY NOT?

• Process can be cleaned up
• either by any other process

- check for zombies just before returning to RUNNING state

• or by parent when it waits for it

- but what if the parent dies first?

• or by dedicated “reaper” process

• Linux uses combination:
• usually parent cleans up child process when waiting
• if parent dies before child, child process is inherited by the 

initial process, which never dies and is continually waiting

Cleaning up zombies
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Switching from executing the current process 
to another runnable process

- Process 1 goes from RUNNING → RUNNABLE/WAITING

- Process 2 goes from RUNNABLE → RUNNING
1. save kernel registers of process 1 on its kernel stack
2. save kernel sp of process 1 in its PCB
3. restore kernel sp of process 2 from its PCB
4. restore kernel registers from its kernel stack

How To Yield/Wait?
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ctx_switch:
  addi sp,sp,-64 // reserve frame
  sw s0,4(sp)
  sw s1,8(sp)
  sw s2,12(sp)
  sw s3,16(sp)
  sw s4,20(sp)
  sw s5,24(sp)
  sw s6,28(sp)
  sw s7,32(sp)
  sw s8,36(sp)
  sw s9,40(sp)
  sw s10,44(sp)
  sw s11,48(sp)
  sw ra,52(sp) // save return addr
  sw sp,0(a0)  // save old sp
  mv sp,a1     // set new sp
  lw s0,4(sp)
  lw s1,8(sp)
  lw s2,12(sp)
  lw s3,16(sp)
  lw s4,20(sp)
  lw s5,24(sp)
  lw s6,28(sp)
  lw s7,32(sp)
  lw s8,36(sp)
  lw s9,40(sp)
  lw s10,44(sp)
  lw s11,48(sp)
  lw ra,52(sp)  // return addr
  addi sp,sp,64 // free frame
  ret      // return

ctx_switch(&old_sp, new_sp)
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USAGE:

struct pcb *current, *next;

void yield(){
 assert(current->state == RUNNING);
 current->state = RUNNABLE;
 runQueue.add(current);
 next = scheduler();
 next->state = RUNNING;
 ctx_switch(&current->sp, next->sp)
 current = next;
 assert(current->state == RUNNING);
}

(author: Yunhao Zhang)



• scheduler() would return NULL and things blow up
• solution: always run a low priority process that sits in an infinite 

loop executing the RISC-V WFI (Wait For Interrupt) or x86 HLT 
instruction or ... (fill in your favorite CPU)
- which waits for the next interrupt, saving energy when there’s nothing to do

What if there are no more RUNNABLE processes?
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1. Interrupt: From user to kernel space
- system call, exception, or interrupt

2. Yield: In kernel space, between two processes
- happens inside the kernel, switching from one PCB/kernel stack to another

3. Return-From-Interrupt: From kernel space to user space
- Through a return_from_interrupt instruction

Note that each involves a stack switch:

1. Px user stack → Px kernel stack

2. Px kernel stack → Py kernel stack

3. Py kernel stack → Py user stack

A context is ”the CPU state,” which is captured in 
its registers.  By context switching, the CPU can 
play different roles at different times

Three “kinds” of context switches
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Example switch between processes
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User

Space

Kernel

Space

Process X Process Y

1

read(file)

disk_read()2

3

return

from

interrupt

resume

before step 2: scheduler picks a runnable process 

1. save process X 

user registers

2. save process X 

kernel registers 

and restore 

process Y kernel 

registers

3. restore process Y 

user registers



• We manage complexity through abstraction
• When I say “tea water,” I mean the water that is used for tea

• but it’s just water
• that same water will serve different purposes in its existence

• When I say “kernel memory,” I mean the memory that is used for 
the kernel
• but it’s just memory
• it’s the same kind of memory that is used for processes

• Actors in a play: same actors can play multiple roles in their 
lives, sometimes even in the same play
• actors are time multiplexed, same as registers of a CPU
• the kernel SP is just the SP that is used by the kernel
• when you’re watching “Woman King,” you’re supposed to 

imagine seeing Nanisca, not Viola Davis

A word on “abstraction”
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• Abstract computer with abstract 
memory, registers, and peripherals

• Some “hardware” computer can be 
multiplexed to run multiple processes
• time multiplexed: registers
• space multiplexed: disk

A “process” is an abstraction
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• A process is an abstraction of a computer
• A context captures the state of the 

processor:
• registers (including PC and SP)

• The implementation uses two contexts:
• user context
• kernel (supervisor) context

• A Process Control Block (PCB) is a kernel 
data structure that saves contexts and 
has other information about the process

Review
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System calls to create a new process

53

Windows:  
CreateProcess(…);

UNIX (Linux):
 fork() + exec(…)



System Call:

if (!CreateProcess(
    NULL, // No module name (use command line)
    argv[1],// Command line
    NULL, // Process handle not inheritable
    NULL, // Thread handle not inheritable
    FALSE, // Set handle inheritance to FALSE
    0,  // No creation flags
    NULL, // Use parent's environment block
    NULL, // Use parent's starting directory
    &si,  // Pointer to STARTUPINFO structure
    &pi )  // Ptr to PROCESS_INFORMATION structure
)

CreateProcess (Simplified)

54[Windows]



System Call:

int pid = fork(  void ☺ 
    NULL, // No module name (use command line)
    argv[1],// Command line
    NULL, // Process handle not inheritable
    NULL, // Thread handle not inheritable
    FALSE, // Set handle inheritance to FALSE
    0,  // No creation flags
    NULL, // Use parent's environment block
    NULL, // Use parent's starting directory
    &si,  // Pointer to STARTUPINFO structure
    &pi )
)

CreateProcess (Simplified)
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fork (actual form)

[UNIX]
pid = process identifier



fork():

• Allocate ProcessID

• Create & initialize PCB

• Create and initialize a new address space

• Inform scheduler that new process is ready to run

exec(program, arguments):

• Load the program into the address space

• Copy arguments into memory in address space

• Initialize h/w context to start execution at “start”

Windows createProcess(…) does both

Kernel actions to create a process
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Creating and Managing Processes

57[UNIX]

fork()
Create a child process as a clone of the current 

process. Returns to both parent and child. Returns 
child pid to parent process, 0 to child process.

exec
(prog, args)

Run the application prog in the current process 

with the specified arguments (replacing any code 
and data that was in the process already)

wait
(&status)

Pause until a child process has exited

exit
(status)

Tell the kernel the current process is complete and

should be garbage collected.

kill
(pid, type)

Send an interrupt of a specified type to a process.

(a bit of a misnomer, no?)

[UNIX]



Fork + Exec
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child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

PC

?

Program A
Process 1

[UNIX]

child_pid



Fork + Exec
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child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

PC

42

Program A
Process 1

[UNIX]

child_pid

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

PC

0

Program A
Process 42

child_pid

fork returns 
twice!



child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

Fork + Exec

60

PC

Program A
Process 1

[UNIX]

PC

Program A
Process 42

Waits until child exits.
42child_pid

0child_pid



child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

42child_pid

0child_pid

Fork + Exec
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PC

Program A
Process 1

[UNIX]

PC

Program A
Process 42

if and else
both executed!



child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

42child_pid

Fork + Exec
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PC

Program A
Process 1

[UNIX]

main() {
   ...

 exit(3);
}

PC

Program B
Process 42



child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(&status);

42child_pid

Fork + Exec

63

PC

Program A
Process 1

[UNIX]

status 3



#include <stdio.h>

#include <unistd.h>

int main() {

int child_pid = fork();

if (child_pid == 0) {      // child process

printf("I am process %d\n", getpid());

  }

  else {                     // parent process.

printf("I am the parent of process %d\n", child_pid);

  }

  return 0;

}

Code example (fork.c)
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Possible outputs? 



Shell

65



• is an interpreter (i.e., just another program)
• language allows user to create/manage programs
• Example shells:

• sh          Original Unix shell (Stephen Bourne, 
                        AT&T Bell Labs, 1977)
• bash   “Bourne-Again” Shell (free, Linux, MacOSX)
• cmd Windows shell (Therese Stowell,
    Microsoft, 1987)
• PowerShell (2006)
• …

What is a Shell?

66

Runs at user-level. Uses syscalls: fork, exec, etc.



• Reads lines of input
• command [arg1 …]

• And executes them
• Full programming language in its own right
• Programs are functions you can call!
• e.g. (sh, bash):

 $ for student in aa12 klm666 xyz32
 > do
  > echo $student  # echo is a print command
  $ if gcc $student/program.c
  > then echo program of $student compiled!
  > else echo program of $student is broken
  > fi
 > done

What is a Shell?
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• Reads lines of input
• command [arg1 …]

• And executes them
• Full programming language in its own right
• Programs are functions you can call!
• e.g. (sh, bash):

 $ for student in `ls Submissions`
 > do
  > echo $student  # echo is a print command
  $ if gcc $student/program.c
  > then echo program of $student compiled!
  > else echo program of $student is broken
  > fi
 > done

What is a Shell?
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Folder with one 

subfolder per student
(this is what CMSX gives me)  



• arguments to command that start with ‘-’
• this is a convention, not a rule

• examples:
• ls –l  # long listing
• ps –a  # print all processes

“flags” (aka options)
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• Just like other programming languages
• State includes:
• environment variables
• home directory     (directory == folder)

• working directory
• list of processes

• Commands often modify the state

Shell has state
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• Each process has access to a collection of 
environment variables
• implicit arguments to the process

• Each env variable has a name and a value
• both are strings

• One env variable is the search “path”
• list of folders/directories to find executables

• For example:
• PATH=/bin:/usr/bin:/usr/local/bin
• export PATH
• echo $PATH

Environment Variables
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• echo [args]  # print arguments
• man cmd  # print manual page for cmd
• ls [-l]    # list the working directory
• pwd    # print working directory
• cd [dir]   # change working directory

- default is “home” directory

• ps [-axl]   # list running processes
• kill [-SIG] PID # send signal to process PID

      # signal 9 terminates PID

$x evaluates to the value of variable x

Some important sh commands
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The shell either
• is reading from standard input
• is waiting for a process to finish

- this is the foreground process

- other processes are background processes

• To start a background process, add ‘&’
• e.g.:       (sleep 5; echo hello)&

“foreground” vs. “background”
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Background processes should not read from standard input!

            Why not?



• x | y
• runs both x and y in foreground
• output of x is input to y
• finishes when both x and y finish

• e.g.:     echo robbert | tr b B

Pipelines
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Threads!   (Chapters 25-27)
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Other terms for threads:
• Lightweight Process
• Thread of Control
• Task



Stack

What happens when…
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Mail

Kernel

PCBs

0x00000000

0xFFFFFFFF

Apache wants to run multiple 
concurrent computations?

Apache

Emacs

ApacheTwo heavyweight address 
spaces for two concurrent 
computations

Hard to share cache, etc.

Heap

Data

Insns

Stack

Heap

Data

Insns

Physical address space
Each process’ address space by color
(shown contiguous to look nicer)



Stack 1

Idea

910x00000000

0xFFFFFFFF

ApacheHeap

Data

Insns

Stack 2

Place concurrent 
computations in the 
same address space!

Mail

Kernel

PCBs

Emacs



• A process is an abstraction of a computer

➢CPU, memory, devices

• A thread is an abstraction of a core

➢registers (incl. PC and SP)

   Unbounded #computers, each with unbounded #cores

- Different processes typically have their own (virtual) memory, but 
different threads share virtual memory.

- Different processes tend to be mutually distrusting, but threads 
must be mutually trusting.  Why?

Process vs. Thread Abstraction

92



Virtual Memory Layout
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Data

Code

Stack 1

PC

Thread 1

PC

PC

SP
Stack 2

Thread 2
SP

Stack 3

Thread 3

SP



Concurrency
• exploiting multiple CPUs/cores

Mask long latency of I/O
• doing useful work while waiting

Responsiveness
• high priority GUI threads / low priority work threads

Encourages natural program structure
• Expressing logically concurrent tasks

• update screen, fetching data, receive user input

Why Threads?
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Web server thread:
1. get network message (URL) from client

2. get URL data from disk

3. compose response

4. send response

Two Thread Examples

95

for (k = 0; k < n; k++) {
  a[k] = b[k] × c[k] + d[k] × e[k]
}



Simple Thread API
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void 
thread_create

(func,arg)

Creates a new thread that will execute function 
func with the arguments arg

void
thread_yield()

Calling thread gives up processor. Scheduler can 
resume running this thread at any point.

void
thread_exit()

Finish caller



• Two kinds of threads:
• Non-preemptive: explicitly yield to other threads
• Preemptive: yield automatically upon clock interrupts

• Most modern threading systems are preemptive
- but not 4411 P1 project

Preemption
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One abstraction, two implementations:
1. “kernel threads”: each thread has its 

own PCB in the kernel, but the PCBs 
point to the same physical memory

2. “user threads”: one PCB for the process; 
threads implemented entirely in user 
space.  Each thread has its own Thread 
Control Block (TCB) and context

Implementation of Threads
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Kernel knows about and schedules 
threads (just like processes)

#1: Kernel-Level Threads

99

Stack 1

0x00000000

0xFFFFFFFF

ApacheHeap

Data

Insns

Stack 2

Mail

Kernel

PCBs

Emacs

• Separate PCB for each thread
• PCBs have:

• same: page table base 
register

• different: PC, SP, registers, 
kernel stack



Run mini-OS in user space
• Real OS unaware of threads
• Single PCB
• Thread Control Block (TCB) 

for each thread
  
Usually more efficient 
than kernel-level threads
(Why?  See next slide)

But kernel-level threads 
simplify system call handling 
and scheduling (Why?)

#2: User-Level Threads

1000x00000000

0xFFFFFFFF

Apache

Mail

Kernel

PCBs

Emacs

Heap + 

Stacks

Data

Insns

“the” stack



Kernel vs User Thread Switch
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User

Space

Kernel

Space

Thread X Thread Y

K

1

K2

K

3

U



Kernel- vs User-level Threads
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Kernel-Level Threads User-level Threads

• Easy to implement: just 

processes with shared 

page table

• Requires user-level 

context switches, 

scheduler

• Threads can run blocking 

system calls concurrently

• Blocking system call 

blocks all threads: needs 

O.S. support for non-

blocking system calls

• Thread switch requires 

three context switches

• Thread switch efficiently 

implemented in user space



Do not presume to know the schedule
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Synchronization 
Matters!
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