
Introduction

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George,

F. B. Schneider, E. G. Sirer, R. van Renesse]

• Intermediates between programs and hardware

• OS creates an environment to execute programs
conveniently and efficiently:

- allocates resources (CPU, storage, ...)

- controls programs
• cooperation (sharing and synchronization)
• isolation (protection and resource management)

What an OS does

2

Operating System

Application Application Application Application Application

Hardware

OS Interface

Physical
Machine
Interface

• Services it provides to programs
• CS4414 focuses on this

• Components implementing those services
- Real hardware is difficult to use directly

Ways to view an OS

3

Learn solutions to problems arising in all
systems:
- Resource sharing (scheduling)

- Cooperation (concurrent programming)

- System structure (abstractions, interfaces)

- Performance (caching, locality, …)

Why Study OS?

4

How designing an OS differs from designing a program

• Measure of success: OS concerned with
extensibility, security, reliability, …

• External interface: OS more complicated and
subject to change. E.g. I/O devices

• Structuring techniques: OS employs

- modules, layers, client-server, event-handler, transactions

Systems vs Programs

5

Emergent properties: Evident only when
components are combined.
 Example: Millennium Bridge (London)

What makes systems complex?

11

Propagation of Effects: When small
changes have disproportionate effects
 Examples:

• Power failures in power grid

• Change auto tire size from 13” to 15”

» kills suspension

• Boeing 737 max 8 design

» 4th generation of 737

» larger engines, mounted further forward and higher

» pushes up nose of jet

» compensated by sensors and software…

What makes systems complex?

12

Incommensurate Scaling: Different parts
follow different scaling rules
 Examples:

• Height limits on skyscrapers

» Square-cube law (Galileo)

• Giant in Jack and the Beanstalk

» Square-cube law as well

• Size limits on cargo ships

» Horizon distance is linear in size of object

» Stopping distance is proportional to object volume

What makes systems complex?

13

• Modularity: Good modularity minimizes
connections between components

• Abstraction: Separate interface from internals;
separate specification from implementation

• Hierarchy: Constrains interactions so easier to
understand

How to Manage Complexity

14

Referee
• Manages shared resources: CPUs, GPUs, memory,

disks, networks, displays, cameras, etc.

Illusionist
• Look! Infinite memory! Your own private processor!

Files that grow automatically!

Glue
• Offers set of common services
• Separates apps from I/O devices

OS has many roles

15

OS as Referee

16

Resource allocation
• Multiple concurrent tasks, how does OS decide who

gets how much?

Isolation
• A faulty app should not disrupt other apps or OS

• OS must export less than full power of underlying

hardware

Communication/Coordination

• Apps need to share state

OS as Illusionist (1)

17

Virtualization: Resources seem present but aren’t

• processor, memory, screen space, disk, network link

• the entire computer (virtual machine):
• fooling the illusionist itself!

Operating System (VMM)

App

Hardware

Virtual
Machine
Interface

App Guest OS Guest OS

App App

Abstraction: Enables new assumptions for clients

• Atomic operations
• HW provides atomicity at word level

- what happens during concurrent updates to complex data structures?

- what if computer crashes during a file write?

• Reliable communication channels
• At the hardware level, packets are lost…

OS as Illusionist (2)

18

OS as Glue

19

Simplify app design and facilitate sharing:
• send/receive of byte streams
• read/write files
• pass messages
• share memory

Portability:

• decoupled HW and app development

• Structure: how is the OS organized?

• Concurrency: how are parallel activities

created and controlled?

• Sharing: how are resources shared?

• Naming: how are resources named by users?

• Protection: how are distrusting parties

protected from each other?

• Security: how to authenticate, authorize, and

ensure privacy?

• Performance: how to make it fast?

Issues in OS Design

20

• Reliability: how do we deal with failures?

• Portability: how to write once, run anywhere?

• Extensibility: how do we add new features?

• Communication: how do we exchange information?

• Scale: what happens as demands increase?

• Persistence: how do we make information outlast the

processes that created it?

• Accounting: who pays the bill and how do we control

resource usage?

Issues in OS Design

21

	Slide 1: Introduction
	Slide 2: What an OS does
	Slide 3: Ways to view an OS
	Slide 4: Why Study OS?
	Slide 5: Systems vs Programs
	Slide 11: What makes systems complex?
	Slide 12: What makes systems complex?
	Slide 13: What makes systems complex?
	Slide 14: How to Manage Complexity
	Slide 15: OS has many roles
	Slide 16: OS as Referee
	Slide 17: OS as Illusionist (1)
	Slide 18: OS as Illusionist (2)
	Slide 19: OS as Glue
	Slide 20: Issues in OS Design
	Slide 21: Issues in OS Design

