
Journaling and
Log-Structured File Systems

(Chapters 42, 43)

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, F.B. Schneider, E. Sirer, R. Van Renesse]

Problem: many file system operations
required multiple disk updates. What if there
is a crash half-way?

Use Journaling / Write-Ahead Logging

• Idea: Protocol where performing a single disk
write causes multiple disk writes to take effect.

• Implementation: New on-disk data structure
(“journal”) with a sequence of blocks containing
updates plus…

Fault-tolerant Disk Update

2

write x; write y; write z
implemented byI

- Append to journal: TxBegin, x, y, z
- Wait for completion of disk writes.
- Append to journal: TxEnd
- Wait for completion of disk write.
- Write x, y, z to final locations in file system

Journal-Update Protocol

3

TxBegin x y z TxEnd
x
y
z

called checkpoint step

write x; write y; write z
implemented byI

- Append to journal: TxBegin, x, y, z
- Wait for completion of disk writes.
- Append to journal: TxEnd
- Wait for completion of disk write.
- Write x, y, z to final locations in file system

Journal-Update Protocol

4

TxBegin x y z TxEnd
x
y
z

why?

write x; write y; write z
implemented byl

- Append to journal: TxBegin, x, y, z
- Wait for completion of disk writes.
- Append to journal: TxEnd
- Wait for completion of disk write.
- Write x, y, z to final locations in file system.

What if Crash?

5

Recovery protocol for TxBegin … TxEnd:
- if TxEnd present then redo writes to final locations following TxBegin
- else ignore journal entries following TxBegin

TxBegin x y z

crash!

• Replay journal from start, writing blocks as
indicated by checkpoint steps.

Infinite Journal à Finite Journal:
• introduce journal super block (JSB) as first entry in

journal: JSB gives start / end entries of journal.
• view journal as a circular log
• delete journal entry and update JSB once writes in

checkpoint step complete

Full-Journal Recovery Protocol

6

JSB

strtend

• Eliminate disk write of TxEnd record.
• Compute checksum of xxx in “TxBegin xxx TxEnd”
• Include checksum TxBegin.
• Recovery checks whether all log entries present.

• Eliminate disk write of xxx when data block
• Step 1: Write data block to final disk location
• Step 2: Await completion
• Step 3: Write meta-data blocks to journal
• Step 4: Await completion

Performance Optimizations

7

Technological drivers:
• System memories are getting larger

• Larger disk cache
• Reads mostly serviced by cache
• Traffic to disk mostly writes.

• Sequential disk access performs better.
• Avoid seeks for even better performance
• Better wear leveling on SSDs!

Idea: Buffer writes and store as single log
entry on disk. Disk becomes one long log!

Log-Structured File Systems

8

• Updates to file j and k are buffered.
• Inode for a file points to log entry for data
• An entire segment is written at once.

Storing Data on Disk

9

4 LOG-STRUCTURED FILE SYSTEMS

segment, and then writes the segment all at once to the disk. As long as
the segment is large enough, these writes will be efficient.

Here is an example, in which LFS buffers two sets of updates into a
small segment; actual segments are larger (a few MB). The first update is
of four block writes to file j; the second is one block being added to file k.
LFS then commits the entire segment of seven blocks to disk at once. The
resulting on-disk layout of these blocks is as follows:

Dj,0

A0

Dj,1

A1

Dj,2

A2

Dj,3

A3

b[0]:A0
b[1]:A1
b[2]:A2
b[3]:A3

Inode j

Dk,0

A5

b[0]:A5

Inode k

43.3 How Much To Buffer?

This raises the following question: how many updates should LFS
buffer before writing to disk? The answer, of course, depends on the disk
itself, specifically how high the positioning overhead is in comparison to
the transfer rate; see the FFS chapter for a similar analysis.

For example, assume that positioning (i.e., rotation and seek over-
heads) before each write takes roughly Tposition seconds. Assume further
that the disk transfer rate is Rpeak MB/s. How much should LFS buffer
before writing when running on such a disk?

The way to think about this is that every time you write, you pay a
fixed overhead of the positioning cost. Thus, how much do you have
to write in order to amortize that cost? The more you write, the better
(obviously), and the closer you get to achieving peak bandwidth.

To obtain a concrete answer, let’s assume we are writing out D MB.
The time to write out this chunk of data (Twrite) is the positioning time
Tposition plus the time to transfer D (D

Rpeak
), or:

Twrite = Tposition +
D

Rpeak
(43.1)

And thus the effective rate of writing (Reffective), which is just the
amount of data written divided by the total time to write it, is:

Reffective =
D

Twrite
=

D

Tposition + D
Rpeak

. (43.2)

What we’re interested in is getting the effective rate (Reffective) close
to the peak rate. Specifically, we want the effective rate to be some fraction
F of the peak rate, where 0 < F < 1 (a typical F might be 0.9, or 90% of
the peak rate). In mathematical form, this means we want Reffective =
F ×Rpeak.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG

In UFS: F: inode nbr à location on disk
In LFS: location of inode on disk changes…

LFS: Maintain inode Map in pieces and store updated
piece on disk.
• For write performance: Put piece(s) at end of segment
• Checkpoint Region: Points to all inode map pieces and is

updated every 30 secs. Located at fixed disk address. Also
buffered in memory

How to Find Inode on Disk

10

LOG-STRUCTURED FILE SYSTEMS 7

43.6 Completing The Solution: The Checkpoint Region

The clever reader (that’s you, right?) might have noticed a problem
here. How do we find the inode map, now that pieces of it are also now
spread across the disk? In the end, there is no magic: the file system must
have some fixed and known location on disk to begin a file lookup.

LFS has just such a fixed place on disk for this, known as the check-
point region (CR). The checkpoint region contains pointers to (i.e., ad-
dresses of) the latest pieces of the inode map, and thus the inode map
pieces can be found by reading the CR first. Note the checkpoint region
is only updated periodically (say every 30 seconds or so), and thus perfor-
mance is not ill-affected. Thus, the overall structure of the on-disk layout
contains a checkpoint region (which points to the latest pieces of the in-
ode map); the inode map pieces each contain addresses of the inodes; the
inodes point to files (and directories) just like typical UNIX file systems.

Here is an example of the checkpoint region (note it is all the way at
the beginning of the disk, at address 0), and a single imap chunk, inode,
and data block. A real file system would of course have a much bigger
CR (indeed, it would have two, as we’ll come to understand later), many
imap chunks, and of course many more inodes, data blocks, etc.

imap
[k...k+N]:

A2
CR

0

D

A0

I[k]
b[0]:A0

A1

imap
m[k]:A1

A2

43.7 Reading A File From Disk: A Recap

To make sure you understand how LFS works, let us now walk through
what must happen to read a file from disk. Assume we have nothing in
memory to begin. The first on-disk data structure we must read is the
checkpoint region. The checkpoint region contains pointers (i.e., disk ad-
dresses) to the entire inode map, and thus LFS then reads in the entire in-
ode map and caches it in memory. After this point, when given an inode
number of a file, LFS simply looks up the inode-number to inode-disk-
address mapping in the imap, and reads in the most recent version of the
inode. To read a block from the file, at this point, LFS proceeds exactly
as a typical UNIX file system, by using direct pointers or indirect pointers
or doubly-indirect pointers as need be. In the common case, LFS should
perform the same number of I/Os as a typical file system when reading a
file from disk; the entire imap is cached and thus the extra work LFS does
during a read is to look up the inode’s address in the imap.

c© 2008–19, ARPACI-DUSSEAU
THREE

EASY

PIECES

• [Load checkpoint region CR into memory]
• [Copy inode map into memory]
• Read appropriate inode from disk if needed
• Read appropriate file (dir or data) block
[…] = step not needed if information already cached.

To Read a File in LFS

11

LOG-STRUCTURED FILE SYSTEMS 7

43.6 Completing The Solution: The Checkpoint Region

The clever reader (that’s you, right?) might have noticed a problem
here. How do we find the inode map, now that pieces of it are also now
spread across the disk? In the end, there is no magic: the file system must
have some fixed and known location on disk to begin a file lookup.

LFS has just such a fixed place on disk for this, known as the check-
point region (CR). The checkpoint region contains pointers to (i.e., ad-
dresses of) the latest pieces of the inode map, and thus the inode map
pieces can be found by reading the CR first. Note the checkpoint region
is only updated periodically (say every 30 seconds or so), and thus perfor-
mance is not ill-affected. Thus, the overall structure of the on-disk layout
contains a checkpoint region (which points to the latest pieces of the in-
ode map); the inode map pieces each contain addresses of the inodes; the
inodes point to files (and directories) just like typical UNIX file systems.

Here is an example of the checkpoint region (note it is all the way at
the beginning of the disk, at address 0), and a single imap chunk, inode,
and data block. A real file system would of course have a much bigger
CR (indeed, it would have two, as we’ll come to understand later), many
imap chunks, and of course many more inodes, data blocks, etc.

imap
[k...k+N]:

A2
CR

0

D

A0

I[k]
b[0]:A0

A1

imap
m[k]:A1

A2

43.7 Reading A File From Disk: A Recap

To make sure you understand how LFS works, let us now walk through
what must happen to read a file from disk. Assume we have nothing in
memory to begin. The first on-disk data structure we must read is the
checkpoint region. The checkpoint region contains pointers (i.e., disk ad-
dresses) to the entire inode map, and thus LFS then reads in the entire in-
ode map and caches it in memory. After this point, when given an inode
number of a file, LFS simply looks up the inode-number to inode-disk-
address mapping in the imap, and reads in the most recent version of the
inode. To read a block from the file, at this point, LFS proceeds exactly
as a typical UNIX file system, by using direct pointers or indirect pointers
or doubly-indirect pointers as need be. In the common case, LFS should
perform the same number of I/Os as a typical file system when reading a
file from disk; the entire imap is cached and thus the extra work LFS does
during a read is to look up the inode’s address in the imap.

c© 2008–19, ARPACI-DUSSEAU
THREE

EASY

PIECES

Eventually disk will fill. But many blocks
(“garbage”) not reachable via CR, because they
were overwritten.

Garbage Collection

12

LOG-STRUCTURED FILE SYSTEMS 9

43.9 A New Problem: Garbage Collection

You may have noticed another problem with LFS; it repeatedly writes
the latest version of a file (including its inode and data) to new locations
on disk. This process, while keeping writes efficient, implies that LFS
leaves old versions of file structures scattered throughout the disk. We
(rather unceremoniously) call these old versions garbage.

For example, let’s imagine the case where we have an existing file re-
ferred to by inode number k, which points to a single data block D0.
We now update that block, generating both a new inode and a new data
block. The resulting on-disk layout of LFS would look something like this
(note we omit the imap and other structures for simplicity; a new chunk
of imap would also have to be written to disk to point to the new inode):

D0

A0

I[k]
b[0]:A0

(garbage)

D0

A4

I[k]
b[0]:A4

In the diagram, you can see that both the inode and data block have
two versions on disk, one old (the one on the left) and one current and
thus live (the one on the right). By the simple act of (logically) updating
a data block, a number of new structures must be persisted by LFS, thus
leaving old versions of said blocks on the disk.

As another example, imagine we instead append a block to that orig-
inal file k. In this case, a new version of the inode is generated, but the
old data block is still pointed to by the inode. Thus, it is still live and very
much part of the current file system:

D0

A0

I[k]
b[0]:A0

(garbage)

D1

A4

b[0]:A0
b[1]:A4

I[k]

So what should we do with these older versions of inodes, data blocks,
and so forth? One could keep those older versions around and allow
users to restore old file versions (for example, when they accidentally
overwrite or delete a file, it could be quite handy to do so); such a file
system is known as a versioning file system because it keeps track of the
different versions of a file.

However, LFS instead keeps only the latest live version of a file; thus
(in the background), LFS must periodically find these old dead versions
of file data, inodes, and other structures, and clean them; cleaning should

c© 2008–19, ARPACI-DUSSEAU
THREE

EASY

PIECES

LOG-STRUCTURED FILE SYSTEMS 9

43.9 A New Problem: Garbage Collection

You may have noticed another problem with LFS; it repeatedly writes
the latest version of a file (including its inode and data) to new locations
on disk. This process, while keeping writes efficient, implies that LFS
leaves old versions of file structures scattered throughout the disk. We
(rather unceremoniously) call these old versions garbage.

For example, let’s imagine the case where we have an existing file re-
ferred to by inode number k, which points to a single data block D0.
We now update that block, generating both a new inode and a new data
block. The resulting on-disk layout of LFS would look something like this
(note we omit the imap and other structures for simplicity; a new chunk
of imap would also have to be written to disk to point to the new inode):

D0

A0

I[k]
b[0]:A0

(garbage)

D0

A4

I[k]
b[0]:A4

In the diagram, you can see that both the inode and data block have
two versions on disk, one old (the one on the left) and one current and
thus live (the one on the right). By the simple act of (logically) updating
a data block, a number of new structures must be persisted by LFS, thus
leaving old versions of said blocks on the disk.

As another example, imagine we instead append a block to that orig-
inal file k. In this case, a new version of the inode is generated, but the
old data block is still pointed to by the inode. Thus, it is still live and very
much part of the current file system:

D0

A0

I[k]
b[0]:A0

(garbage)

D1

A4

b[0]:A0
b[1]:A4

I[k]

So what should we do with these older versions of inodes, data blocks,
and so forth? One could keep those older versions around and allow
users to restore old file versions (for example, when they accidentally
overwrite or delete a file, it could be quite handy to do so); such a file
system is known as a versioning file system because it keeps track of the
different versions of a file.

However, LFS instead keeps only the latest live version of a file; thus
(in the background), LFS must periodically find these old dead versions
of file data, inodes, and other structures, and clean them; cleaning should

c© 2008–19, ARPACI-DUSSEAU
THREE

EASY

PIECES

Protocol:
1. read segment;
2. identify garbage blocks within;
3. copy non-garbage blocks to new segment;
4. append new segment to disk log

Each segment includes segment summary block that
includes for each data block D in segment:

- inode number
- Offset in the file for that inode

Retrieve the block number for that <inode, offset> from
LFS to reveal if D is live (=) or it is garbage (=!).

LFS Cleaner

13

LFS writes to disk: CR and segment.

After a crash:
• Find most recent consistent CR (see below)
• Roll forward by reading next segment for updates.

Crash-resistant atomic CR update:
• Two copies of CR: at start and end of disk.
• Updates alternate between them.
• Each CR has timestamp ts(CR,start) at start and

ts(CR,end) at end.
- CR consistent if ts(CR,start)=ts(CR,end)
• Use consistent CR with largest timestamp

Crash Recovery

14

