
Virtual Memory & Caching
(Chapter 12-17)

CS 4410
Operating Systems

• Paged Translation
• Efficient Address Translation
• Multi-Level Page Tables
• Inverted Page Tables
• TLBs

This time: Virtual Memory & Caching

Last Time: Address Translation

2

• Each process has illusion of large address space
• 2x bytes for x-bit addressing
• However, physical memory is usually much smaller
• How do we give this illusion to multiple processes?
• Virtual Memory: some addresses reside in disk

What is Virtual Memory?

33Physical memory

Disk

Virtual memory

page 0
page 1
page 2
page 3
page 4

page N

Page Table

Process executes from disk!

4

L2

L1

L3

RAM

DISK

RAM is really just another layer of cache

Swapping
• Loads entire process in memory
• “Swap in” (from disk) or “Swap out” (to disk) a process
• Slow (for large processes)
• Wasteful (might not require everything)
• Does not support sharing of code segments
• Virtual memory limited by size of physical memory

Paging
• Runs all processes concurrently
• A few pages from each process live in memory
• Finer granularity, higher performance
• Large virtual mem supported by small physical mem
• Certain pages (read-only ones, for example) can be shared among

processes

Swapping vs. Paging

5

Mapped
• to a physical frame

Not Mapped (→ Page Fault)
• in a physical frame, but not currently mapped
• or still in the original program file
• or zero-filled (heap/BSS, stack)
• or on backing store (“paged or swapped out”)
• or illegal: not part of a segment
 → Segmentation Fault

(the contents of) A Virtual Page Can Be

6

Modify Page Tables with a present bit
• Page in memory à present = 1
• Page not in memory à PT lookup triggers page fault

32 :P=1
4183:P=0
177 :P=1
5721:P=0

Supporting Virtual Memory

7

Disk

Mem

Page Table

0
1
2
3

Identify page and reason (r/w/x)

• access inconsistent w/ segment access rights
 à terminate process
• access a page that is kept on disk:

 à does frame with the code/data already exist?
 No? Allocate a frame & bring page in (next slide)
• access of zero-initialized data (BSS) or stack
• Allocate a frame, fill frame with zero bytes
• access of COW page
• Allocate a frame and copy

Handling a Page Fault

8

• Find a free frame
- evict one if there are no free frames

• Issue disk request to fetch data for page
• Block current process
• Context switch to another process
• When disk request completes, update PTE
• frame number, present bit, RWX bits
• Put current process in ready queue

When a page needs to be brought in…

9

• Find all page table entries that refer to the frame
- Frame might be shared
- Maintain a Core Map (frames → pages)

• Set each page table entry to not present
• Remove any TLB entries
- “TLB Shootdown”

• Write changes on page back to disk, if needed
- Dirty/Modified bit in PTE indicates need
- Text segments are (still) on program image on disk

When a frame needs to be swapped out…

10

• Save current process’ registers in PCB
• Flush TLB (unless TLB is tagged)
• Restore registers and PTBR of next process

to run
• “Return from Interrupt”

Updated Context Switch

13

Every layer is a cache for the layer below it.

Memory Hierarchy

17

0%

25%

50%

75%

100%

1 2 4 8 16

H
it

R
a

te

Cache Size (KB)

Working Set

18

1. Collection of a process’ most recently used pages
 (The Working Set Model for Program Behavior, Denning,’68)
2. Pages referenced by process in last Δ time-units

Excessive rate of paging
Cache lines evicted before they can be reused

Causes:
• Too many processes in the system
• Cache not big enough to fit working set
• Bad luck (conflicts)
• Bad eviction policies (later)

Prevention:
• Restructure code to reduce working set
• Increase cache size
• Improve caching policies

Thrashing

19

“Thrash” dates from the 1960’s, when disk drives were as large as
washing machines. If a program’s working set did not fit in memory,
the system would need to shuffle memory pages back and forth to
disk. This burst of activity would violently shake the disk drive.

Why “thrashing”?

20

http://royal.pingdom.com/2008/04/08/the-history-of-computer-data-storage-in-pictures/

The first hard disk
drive—the IBM
Model 350 Disk

File (came w/IBM
305 RAMAC,

1956).

Total storage =
5 million

characters (just
under 5 MB).

• Assignment: where do you put the data?
• Replacement: whom do you kick out?

25

Caching

What do you do when memory is full?

• Random: Pick any page to eject at random
• Used mainly for comparison
• FIFO: The page brought in earliest is evicted
• Ignores usage
• OPT: Belady’s algorithm
• Select page not used for longest time
• LRU: Evict page that hasn’t been used for the longest
• Assumes past is a good predictor of the future
• MRU: Evict the most recently used page
• LFU: Evict least frequently used page
• And many approximation algorithms

Page Replacement Algorithms

26

• more frames (i.e., larger cache) à
 not more misses

Expectation

27

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 frames (3 pages in memory at a time per process):

First-In-First-Out (FIFO) Algorithm

28

frames
1 1
2 2 1
3 3 2 1
4 3 2 4
1 3 1 4
2 2 1 4
5 2 1 5
1 2 1 5
2 2 1 5
3 2 3 5
4 4 3 5
5 4 3 5

ß contents of frames after reference

page fault (miss)
hitre

fe
re

nc
e

9 page faults

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 4 frames (4 pages in memory at a time per process):

First-In-First-Out (FIFO) Algorithm

29

frames
1 1
2 2 1
3 3 2 1
4 4 3 2 1
1 4 3 2 1
2 4 3 2 1
5 4 3 2 5
1 4 3 1 5
2 4 2 1 5
3 3 2 1 5
4 3 2 3 4
5 3 2 5 4

10 page faults

more frames à more page faults?

Belady’s Anomaly

ß contents of frames after reference

re
fe

re
nc

e

page fault
hit

• Replace frame that will not be used for the longest
• 4 frames example

Optimal Algorithm (OPT)

30

1 1
2 2 1
3 3 2 1
4 4 3 2 1
1 4 3 2 1
2 4 3 2 1
5 5 3 2 1
1 5 3 2 1
2 5 3 2 1
3 5 3 2 1
4 5 3 2 4
5 5 3 2 4

6 page faults
Question: How do we tell the future?
Answer: We can’t

OPT used as upper-bound in measuring
how well your algorithm performs

In real life, we do not have access to the
future page request stream of a program

à Need to make a guess at which pages will
not be used for the longest time

OPT Approximation

31

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Least Recently Used (LRU) Algorithm

32

1 1
2 2 1
3 3 2 1
4 4 3 2 1
1 4 3 2 1
2 4 3 2 1
5 4 5 2 1
1 4 5 2 1
2 4 5 2 1
3 3 5 2 1
4 3 4 2 1
5 3 4 2 5

page fault
hit

8 page faults

• On reference: Timestamp each page
• On eviction: Scan for oldest page

Problems:
• Large page lists
• Timestamps are costly

Solution: approximate LRU
• Note: LRU is already an approximation
• Exploit use (REF) bit in PTE

Implementing LRU

33

• To allocate a frame,
inspect the use bit in
the PTE at clock hand
and advance clock
hand

• Used? Clear use bit
and repeat

Clock Algorithm

36

• Maintain for each frame the approximate time
the frame was last used
• At each clock tick
• Update this time to the current time for all frames

that were referenced since the last clock tick
- i.e., the ones with use (REF) bits set
• Clear all use bits
• Put all frames that have not been used for some time
Δ (working set parameter) on the free list

• When a frame is needed, use free list
• If empty, pick any frame

Working Set Algorithm (WS)

38
Note: requires scan of all frames at each clock tick

MRU: Remove the most recently touched page
• Good for data accessed only once, e.g. a movie file

LFU: Remove page with lowest usage count
• Like CLOCK but use multiple bits. Shift right by 1 at

regular intervals

MFU: remove the most frequently used page

Other Algorithms

• So far, we have tacitly assumed that all
frames are shared by all processes
• This is called “global replacement”
• But is it fair?
• Badly behaved processes can ruin the

experience of processes with good locality
• Local replacement: divided the frames up

evenly between the processes
• Can lead to under-utilization

Local versus Global Replacement

47

