
Main Memory:
Address Translation

(Chapter 12-17)
CS 4410

Operating Systems

Physical Reality: different processes/threads share the
same hardware à need to multiplex
• CPU cores (temporal)
• Memory and cache (spatial and temporal)
• Disk and devices (spatial and/or temporal)

Why worry about memory sharing?
• Complete working state of process and/or kernel is

defined by its data (memory, registers, disk)
• Don’t want different processes to have access to each

other’s memory (protection)

Can’t We All Just Get Along?

2

Isolation
Don’t want distinct process states collided in physical memory
(unintended overlap à chaos)

Sharing
Want option to overlap when desired (for efficiency and
communication)

Virtualization
Want to create the illusion of more resources than exist in
underlying physical system

Utilization
Want the best use of this limited resource

Aspects of Memory Multiplexing

3

Virtual view of process memory

5

0xffffffff

0x00000000

stack

text

data

heap

0 1 2 3 4 5 6 7

SEGMENTS

Need to find a place where the physical
memory of the process lives

àKeep track of a “free list” of available
memory blocks (so-called “holes”)

Where do we store virtual memory?

6

Dynamic Storage-Allocation Problem
• First-fit: Allocate first hole that is big enough
• Next-fit: Allocate next hole that is big enough
• Best-fit: Allocate smallest hole that is big enough;

must search entire free list, unless ordered by size
– Produces the smallest leftover hole

• Worst-fit: Allocate largest hole; must also search
entire free list
– Produces the largest leftover hole

Fragmentation
Internal Fragmentation
• allocated memory may be larger than requested

memory; this size difference is memory internal to
a partition, but not being used

External Fragmentation
• total memory space exists to satisfy a request, but

it is not contiguous

How do we map virtual à physical
• Having found the physical memory, how

do we map virtual addresses to physical
addresses?

9

Early Days: Base and Limit Registers
Base and Limit registers for each process

Physical
Memory

Limit
Base

Limit
Base

process 2

process 1

physical address =
 virtual address + base

(segmentation fault if
virtual address ≥ limit)

Early Days: Base and Limit Registers
Base and Limit registers for each process

Physical
Memory

Limit
Base

Limit
Base

process 2

process 1

physical address =
 virtual address + base

(segmentation fault if
virtual address ≥ limit)

virtual hole between heap and stack leads
to significant internal fragmentation

Next: segmentation
• Base and Limit register for each

segment: code, data/heap, stack

Physical
Memory

Limit
Base

Limit
Base

code

Limit
Base

stack

data/heap

physical address =
 virtual address
 − virtual start of segment
 + base

Next: segmentation
• Base and Limit register for each

segment: code, data/heap, stack

Physical
Memory

Limit
Base

Limit
Base

data/heap

code

physical holes between
segments leads to
significant external
fragmentation

Limit
Base

stack

physical address =
 virtual address
 − virtual start of segment
 + base

TERMINOLOGY ALERT:
Page: virtual
Frame: physical

Paged Translation

14

stack

text

data

heap

Process
View

Virtual
Page 0

Virtual
Page N

STACK 0

TEXT 0

DATA 0

HEAP 1

Physical
Memory

HEAP 0

TEXT 1

STACK 1
Frame 0

Frame M Solves both
internal and

external
fragmentation!

(to a large extent)

Divide:
• Physical memory into fixed-sized blocks called frames
• Virtual memory into blocks of same size called pages

Management:
• Keep track of which pages are mapped to which frames
• Keep track of all free frames

Notice:
• Not all pages of a process may be mapped to frames

Paging Overview

15

Address Translation, Conceptually

16

Translation

Physical
Memory

Virtual
Address

Raise
Exception

Physical
Address

Valid

Processor

Data

Data

Invalid

Who does this?

• Hardware device
• Maps virtual to physical address (used to access data)

User Process:
• deals with virtual addresses
• Never sees the physical address

Physical Memory:
• deals with physical addresses
• Never sees the virtual address

Memory Management Unit (MMU)

17

red cube is 255th
byte in page 2.

Where is the red cube
in physical memory?

High-Level Address Translation

18

stack

text

data

heap

Process
View

STACK 0

TEXT 0

DATA 0

HEAP 1

Physical
Memory

HEAP 0

TEXT 1

STACK 1
Page 0

Page N

Frame 0

Frame M

Page number – Upper bits (most significant bits)
• Must be translated into a physical frame number

Page offset – Lower bits (least significant bits)
• Does not change in translation

For given logical address space 2m and page size 2n

Virtual Address Components

19

page number page offset

m - n n

High-Level Address Translation

20

stack

text

data

heap

Virtual
Memory

STACK 0

TEXT 0

DATA 0

HEAP 1

Physical
Memory

HEAP 0

TEXT 1

STACK 1

0x0000

0x1000

0x2000
0x3000

0x4000

0x5000

0x20FF

0x0000
0x1000
0x2000
0x3000
0x4000

0x5000

0x6000
0x????

Who keeps
track of the
mapping?

à Page Table
0
1
2
3
4
5…

-
3
6
4
8
5

High-Level Address Translation

21

stack

text

data

heap

Virtual
Memory

STACK 0

TEXT 0

DATA 0

HEAP 1

Physical
Memory

HEAP 0

TEXT 1

STACK 1

0x0000

0x1000

0x2000
0x3000

0x4000

0x5000

0x20FF

0x0000
0x1000
0x2000
0x3000
0x4000

0x5000

0x6000
0x60FF

Who keeps
track of the
mapping?

à Page Table
0
1
2
3
4
5…

-
3
6
4
8
5

22

Simple Page Table

Lives in Memory
Page-table base register (PTBR)
• Points to the page table
• Saved/restored on context switch
• Saved in the PCB PTBR

Page-table

• Protection
• Demand Loading
• Copy-On-Write

Leveraging Paging

23

24

Full Page Table

Meta Data about each frame
Protection R/W/X, Modified, Valid, etc.
MMU Enforces R/W/X protection
 (illegal access throws a page fault)

PTBR

Page-table

• Protection
• Demand Loading
• Copy-On-Write

Leveraging Paging

25

• Page not mapped until it is used
• Requires free frame allocation
• What if there is no free frame???

• May involve reading page contents from disk
or over the network

Demand Loading

26

• Paged Translation
• Efficient Address Translation
• Multi-Level Page Tables
• Inverted Page Tables
• TLBs

Address Translation

34

35

Physical
Memory

Implementation

Level 1

Level 2

Level 3

Processor

Virtual
Address

OffsetIndex 3Index 2Index 1

Frame Offset

Physical
Address

Multi-Level Page Tables to reduce
page table space

index 1 | index 2 | offset

PTBR points to level 1 page table
+ Allocate only PTEs in use
+ Simple memory allocation
− more lookups per memory reference

32-bit machine, 1KB page size
• Logical address is divided into:

– a page offset of 10 bits (1024 = 210)
– a page number of 22 bits (32-10)

• Since the page table is paged, the page number is
further divided into (say):
– a 12-bit first index
– a 10-bit second index

• Thus, a logical address is as follows:

Two-Level Paging Example

page number page offset

12 10 10
36

index 1 index 2 offset

• Suppose 32-bit virtual address, 2-level page table
• So, address is 10+10+12 bits

• Page Table Entry (PTE) is 32 bits (4 bytes)
• convenient: PTE is the size of a word

• Frame number in PTE is 22 bits
• What is the page size?
• Answer: 212 = 4096 bytes

• What is the frame size?
• Answer: same

• How many pages in the virtual address space?
• Answer: 210 x 210 = 220

• How many PTEs in the first-level page table?
• Answer: 210 = 1024

• How many PTEs in the second-level page table?
• Answer: same

• How large is a page table?
• Answer: 210 x 4 = 4 kilobytes
- conveniently fits in a frame, which simplifies allocation

• What is the maximal physical memory size?
• Answer: 222 x 212 = 234 = 16 gigabytes

Another example

37

• In our example, a page table fits in a frame
• Suppose now that we only need to map the

following pages:
• 1: text
• 2: data + heap
• 220 – 1: stack
• How many frames do we need to allocate?
• Answer: 6
- 1 for the first level page table
- 1 second level page table for pages 1 and 2
- 1 second level page table for page 220 – 1
- 3 frames for each of the pages

• How many memory accesses are needed to read a
word in virtual memory?
• Answer: 3 (see next slide)

Another example, continued

38

• How to read word at address 0x12345678?
- assuming this address is mapped
• Offset is 0x678 (12 bits)
• Page number is 0x12345 (20 bits)
• Split into two 10 bit indices:
- 0001 0010 0011 0100 0101 à
• index1 = 0001001000 = 0x048
• index2 = 1101000101 = 0x345

• Load entry 0x048 in first-level page table:
- @address PTBR + 0x048 à X (frame number of next PT)
• Load entry 0x345 in second-level page table:
- @address X + 0x345 à Y (frame number)
• Load word @address Y + 0x678
• Note: math didn’t include some right shifts for readability

Another example, continued

39

40

Physical
Memory

Implementation

Level 1

Level 2

Level 3

Processor

Virtual
Address

OffsetIndex 3Index 2Index 1

Frame Offset

Physical
Address

+ First Level requires less contiguous memory
− even more lookups per memory reference

3 level page table example

Index is an index into (depending on Present bit):
• frames
- physical process memory or next level page table
• backing store
- if page was swapped out

Synonyms:
• Present bit == Valid bit
• Dirty bit == Modified bit
• Referenced bit == Accessed bit
• Index == offset

Complete Page Table Entry (PTE)

41

Valid Protection	R/W/X Ref Dirty IndexPresent

• Paged Translation
• Efficient Address Translation
• Multi-Level Page Tables
• Inverted Page Tables
• TLBs

Address Translation

46

Associative cache of virtual to physical page
translations

47

Physical
Memory

Frame Offset

Physical
Address

Page# Offset

Virtual
Address

Translation Lookaside Buffer (TLB)

Virtual
Page

Page
Frame Access

Matching Entry

Page Table
Lookup

Translation Lookaside Buffer (TLB)

Access TLB before you access memory.

Address Translation with TLB

48

TLB

Physical
Memory

Virtual
Address

Virtual
Address

Frame Frame

Raise
Exception

Physical
Address

Hit
Valid

Processor Page
Table

Data

Data

Miss Invalid

Offset

Why not just have a large TLB?

49

Why not just have a large TLB?

50

• TLBs are fast because they are small

• Software-loaded: TLB-miss à software
handler
• Hardware-loaded: TLB-miss à hardware

”walks” page table itself
• may lead to “page fault” if page is not in

memory

Software vs. Hardware-Loaded TLB

51

Process isolation
• Keep a process from touching anyone else’s memory, or

the kernel’s
Efficient inter-process communication
• Shared regions of memory between processes

Shared code segments
• common libraries used by many different programs

Program initialization
• Start running a program before it is entirely in memory

Dynamic memory allocation
• Allocate and initialize stack/heap pages on demand

Address Translation Uses!

52

Program debugging
• Data breakpoints when address is accessed

Memory mapped files
• Access file data using load/store instructions

Demand-paged virtual memory
• Illusion of near-infinite memory, backed by disk or

memory on other machines
Checkpointing/restart
• Transparently save a copy of a process, without stopping

the program while the save happens
Distributed shared memory
• Illusion of memory that is shared between machines

MORE Address Translation Uses!

53

